SIMD架构的软核缩减方法:OPENRISC案例研究

Bouthaina Damak, M. Baklouti, M. Abid
{"title":"SIMD架构的软核缩减方法:OPENRISC案例研究","authors":"Bouthaina Damak, M. Baklouti, M. Abid","doi":"10.1109/IDT.2010.5724405","DOIUrl":null,"url":null,"abstract":"Multi-Processor Systems on Chip (MPSoCs) have been proposed as a promising solution for the increasing demand of computational power required for recent application. The parallelization through SIMD (single instruction/multiple data) architectures has been a proven solution to speed up the processing of the recent application that exhibit massive amounts of data parallelism. The level of parallelism impacts the SIMD architecture performance and it is closely related to the design of the processing element. In this context this paper presents a new design methodology of designing processing element for SIMD architecture. The scope of this work is to reduce the pipeline stages of the soft-core processor to reduce the size of the PEs and so that to built up a high level parallelism architecture.","PeriodicalId":153183,"journal":{"name":"2010 5th International Design and Test Workshop","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Soft-core reduction methodology for SIMD architecture: OPENRISC case study\",\"authors\":\"Bouthaina Damak, M. Baklouti, M. Abid\",\"doi\":\"10.1109/IDT.2010.5724405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-Processor Systems on Chip (MPSoCs) have been proposed as a promising solution for the increasing demand of computational power required for recent application. The parallelization through SIMD (single instruction/multiple data) architectures has been a proven solution to speed up the processing of the recent application that exhibit massive amounts of data parallelism. The level of parallelism impacts the SIMD architecture performance and it is closely related to the design of the processing element. In this context this paper presents a new design methodology of designing processing element for SIMD architecture. The scope of this work is to reduce the pipeline stages of the soft-core processor to reduce the size of the PEs and so that to built up a high level parallelism architecture.\",\"PeriodicalId\":153183,\"journal\":{\"name\":\"2010 5th International Design and Test Workshop\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 5th International Design and Test Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IDT.2010.5724405\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 5th International Design and Test Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IDT.2010.5724405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

多处理器片上系统(mpsoc)已被提出作为一个有前途的解决方案,以满足日益增长的计算能力的需求。通过SIMD(单指令/多数据)架构实现的并行化已经被证明是一种有效的解决方案,可以加速最近出现的大量数据并行性的应用程序的处理。并行度的高低影响SIMD体系结构的性能,并与处理单元的设计密切相关。在此背景下,本文提出了一种新的SIMD体系结构处理单元设计方法。这项工作的范围是减少软核处理器的流水线阶段,以减少pe的大小,从而建立一个高层次的并行体系结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Soft-core reduction methodology for SIMD architecture: OPENRISC case study
Multi-Processor Systems on Chip (MPSoCs) have been proposed as a promising solution for the increasing demand of computational power required for recent application. The parallelization through SIMD (single instruction/multiple data) architectures has been a proven solution to speed up the processing of the recent application that exhibit massive amounts of data parallelism. The level of parallelism impacts the SIMD architecture performance and it is closely related to the design of the processing element. In this context this paper presents a new design methodology of designing processing element for SIMD architecture. The scope of this work is to reduce the pipeline stages of the soft-core processor to reduce the size of the PEs and so that to built up a high level parallelism architecture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信