最小均方学习子空间信息准则的不敏感修正

Xuejun Zhou
{"title":"最小均方学习子空间信息准则的不敏感修正","authors":"Xuejun Zhou","doi":"10.1109/ISCID.2013.219","DOIUrl":null,"url":null,"abstract":"The least mean squares (LMS) algorithm is widely applied in the machine learning community. Insensitive Modification of Subspace Information Criterion (IMSIC) is one of the model selection methods, which is defined on an unbiased estimator of the generalization error-Subspace Information Criterion(SIC). In this paper, we will give the method of selecting LMS learning models by IMSIC.","PeriodicalId":297027,"journal":{"name":"2013 Sixth International Symposium on Computational Intelligence and Design","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insensitive Modification of Subspace Information Criterion for Least Mean Squares Learning\",\"authors\":\"Xuejun Zhou\",\"doi\":\"10.1109/ISCID.2013.219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The least mean squares (LMS) algorithm is widely applied in the machine learning community. Insensitive Modification of Subspace Information Criterion (IMSIC) is one of the model selection methods, which is defined on an unbiased estimator of the generalization error-Subspace Information Criterion(SIC). In this paper, we will give the method of selecting LMS learning models by IMSIC.\",\"PeriodicalId\":297027,\"journal\":{\"name\":\"2013 Sixth International Symposium on Computational Intelligence and Design\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Sixth International Symposium on Computational Intelligence and Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCID.2013.219\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Sixth International Symposium on Computational Intelligence and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCID.2013.219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最小均方差(LMS)算法在机器学习领域得到了广泛的应用。子空间信息准则的不敏感修正(IMSIC)是一种模型选择方法,它是在泛化误差的无偏估计量-子空间信息准则(SIC)上定义的。在本文中,我们将给出基于IMSIC的LMS学习模型的选择方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Insensitive Modification of Subspace Information Criterion for Least Mean Squares Learning
The least mean squares (LMS) algorithm is widely applied in the machine learning community. Insensitive Modification of Subspace Information Criterion (IMSIC) is one of the model selection methods, which is defined on an unbiased estimator of the generalization error-Subspace Information Criterion(SIC). In this paper, we will give the method of selecting LMS learning models by IMSIC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信