基于ga的能量优化移动自组织云资源增强协商

E. Benkhelifa, T. Welsh, L. Tawalbeh, Abdallah Khreishah, Y. Jararweh, M. Al-Ayyoub
{"title":"基于ga的能量优化移动自组织云资源增强协商","authors":"E. Benkhelifa, T. Welsh, L. Tawalbeh, Abdallah Khreishah, Y. Jararweh, M. Al-Ayyoub","doi":"10.1109/MobileCloud.2016.25","DOIUrl":null,"url":null,"abstract":"Mobile and cloud computing are two areas which are rapidly expanding in terms of use case and functionality. An ad-hoc mobile cloud can be constructed upon local devices, where devices work together and share resources, aspects such as energy and costs may be minimised. This paper builds on previous work which proposed an end-to-end system whereby user applications may be profiled for their resource consumption locally and then if augmentation is required, they may negotiate with a local mobile ad-hoc cloud for optimum energy and resource utilisation. The contribution of this paper focuses upon a novel and adapted Genetic Algorithm approach to resource negotiation in order to further enable energy-optimised resource augmentation for Mobile Ad-hoc clouds.","PeriodicalId":176270,"journal":{"name":"2016 4th IEEE International Conference on Mobile Cloud Computing, Services, and Engineering (MobileCloud)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"GA-Based Resource Augmentation Negotation for Energy-Optimised Mobile Ad-hoc Cloud\",\"authors\":\"E. Benkhelifa, T. Welsh, L. Tawalbeh, Abdallah Khreishah, Y. Jararweh, M. Al-Ayyoub\",\"doi\":\"10.1109/MobileCloud.2016.25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mobile and cloud computing are two areas which are rapidly expanding in terms of use case and functionality. An ad-hoc mobile cloud can be constructed upon local devices, where devices work together and share resources, aspects such as energy and costs may be minimised. This paper builds on previous work which proposed an end-to-end system whereby user applications may be profiled for their resource consumption locally and then if augmentation is required, they may negotiate with a local mobile ad-hoc cloud for optimum energy and resource utilisation. The contribution of this paper focuses upon a novel and adapted Genetic Algorithm approach to resource negotiation in order to further enable energy-optimised resource augmentation for Mobile Ad-hoc clouds.\",\"PeriodicalId\":176270,\"journal\":{\"name\":\"2016 4th IEEE International Conference on Mobile Cloud Computing, Services, and Engineering (MobileCloud)\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 4th IEEE International Conference on Mobile Cloud Computing, Services, and Engineering (MobileCloud)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MobileCloud.2016.25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 4th IEEE International Conference on Mobile Cloud Computing, Services, and Engineering (MobileCloud)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MobileCloud.2016.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

移动和云计算是在用例和功能方面迅速扩展的两个领域。可以在本地设备上构建临时移动云,其中设备一起工作并共享资源,从而将能源和成本等方面降至最低。本文建立在先前的工作基础上,该工作提出了一个端到端系统,用户应用程序可以在本地对其资源消耗进行分析,然后如果需要增加,他们可以与本地移动自组织云进行协商,以获得最佳的能源和资源利用。本文的贡献集中在一种新的和自适应的遗传算法方法来进行资源协商,以便进一步为移动自组织云实现能源优化的资源增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GA-Based Resource Augmentation Negotation for Energy-Optimised Mobile Ad-hoc Cloud
Mobile and cloud computing are two areas which are rapidly expanding in terms of use case and functionality. An ad-hoc mobile cloud can be constructed upon local devices, where devices work together and share resources, aspects such as energy and costs may be minimised. This paper builds on previous work which proposed an end-to-end system whereby user applications may be profiled for their resource consumption locally and then if augmentation is required, they may negotiate with a local mobile ad-hoc cloud for optimum energy and resource utilisation. The contribution of this paper focuses upon a novel and adapted Genetic Algorithm approach to resource negotiation in order to further enable energy-optimised resource augmentation for Mobile Ad-hoc clouds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信