{"title":"计算控制不变集的简单层次结构","authors":"Tzanis Anevlavis, P. Tabuada","doi":"10.1145/3365365.3382205","DOIUrl":null,"url":null,"abstract":"In this paper we revisit the problem of computing controlled invariant sets for controllable discrete-time linear systems and present a novel hierarchy for their computation. The key insight is to lift the problem to a higher dimensional space where the maximal controlled invariant set can be computed exactly and in closed-form for the lifted system. By projecting this set into the original space we obtain a controlled invariant set that is a subset of the maximal controlled invariant set for the original system. Building upon this insight we describe in this paper a hierarchy of spaces where the original problem can be lifted into so as to obtain a sequence of increasing controlled invariant sets. The algorithm that results from the proposed hierarchy does not rely on iterative computations. We illustrate the performance of the proposed method on a variety of scenarios exemplifying its appeal.","PeriodicalId":162317,"journal":{"name":"Proceedings of the 23rd International Conference on Hybrid Systems: Computation and Control","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A simple hierarchy for computing controlled invariant sets\",\"authors\":\"Tzanis Anevlavis, P. Tabuada\",\"doi\":\"10.1145/3365365.3382205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we revisit the problem of computing controlled invariant sets for controllable discrete-time linear systems and present a novel hierarchy for their computation. The key insight is to lift the problem to a higher dimensional space where the maximal controlled invariant set can be computed exactly and in closed-form for the lifted system. By projecting this set into the original space we obtain a controlled invariant set that is a subset of the maximal controlled invariant set for the original system. Building upon this insight we describe in this paper a hierarchy of spaces where the original problem can be lifted into so as to obtain a sequence of increasing controlled invariant sets. The algorithm that results from the proposed hierarchy does not rely on iterative computations. We illustrate the performance of the proposed method on a variety of scenarios exemplifying its appeal.\",\"PeriodicalId\":162317,\"journal\":{\"name\":\"Proceedings of the 23rd International Conference on Hybrid Systems: Computation and Control\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 23rd International Conference on Hybrid Systems: Computation and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3365365.3382205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 23rd International Conference on Hybrid Systems: Computation and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3365365.3382205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A simple hierarchy for computing controlled invariant sets
In this paper we revisit the problem of computing controlled invariant sets for controllable discrete-time linear systems and present a novel hierarchy for their computation. The key insight is to lift the problem to a higher dimensional space where the maximal controlled invariant set can be computed exactly and in closed-form for the lifted system. By projecting this set into the original space we obtain a controlled invariant set that is a subset of the maximal controlled invariant set for the original system. Building upon this insight we describe in this paper a hierarchy of spaces where the original problem can be lifted into so as to obtain a sequence of increasing controlled invariant sets. The algorithm that results from the proposed hierarchy does not rely on iterative computations. We illustrate the performance of the proposed method on a variety of scenarios exemplifying its appeal.