基于并行k -均值的Hadoop文档聚类效率评价

T. H. Sardar, Z. Ansari, A. Khatun
{"title":"基于并行k -均值的Hadoop文档聚类效率评价","authors":"T. H. Sardar, Z. Ansari, A. Khatun","doi":"10.1109/ICCS1.2017.8325954","DOIUrl":null,"url":null,"abstract":"One of the significant data mining techniques is clustering. Due to digitalization and globalization of each work space, large datasets are being generated rapidly. Such large dataset clustering is a challenge for traditional sequential clustering algorithms as it requires large execution time to cluster such datasets. Distributed parallel architectures and algorithms are thus helpful to achieve performance and scalability requirement of clustering large datasets. In this study, we design and experiment a parallel k-means algorithm using MapReduce programming model and compared the result with sequential k-means for clustering varying size of document dataset. The result demonstrates that proposed k-means obtains higher performance and outperformed sequential k-means while clustering documents.","PeriodicalId":367360,"journal":{"name":"2017 IEEE International Conference on Circuits and Systems (ICCS)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"An evaluation of Hadoop cluster efficiency in document clustering using parallel K-means\",\"authors\":\"T. H. Sardar, Z. Ansari, A. Khatun\",\"doi\":\"10.1109/ICCS1.2017.8325954\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the significant data mining techniques is clustering. Due to digitalization and globalization of each work space, large datasets are being generated rapidly. Such large dataset clustering is a challenge for traditional sequential clustering algorithms as it requires large execution time to cluster such datasets. Distributed parallel architectures and algorithms are thus helpful to achieve performance and scalability requirement of clustering large datasets. In this study, we design and experiment a parallel k-means algorithm using MapReduce programming model and compared the result with sequential k-means for clustering varying size of document dataset. The result demonstrates that proposed k-means obtains higher performance and outperformed sequential k-means while clustering documents.\",\"PeriodicalId\":367360,\"journal\":{\"name\":\"2017 IEEE International Conference on Circuits and Systems (ICCS)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Circuits and Systems (ICCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCS1.2017.8325954\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Circuits and Systems (ICCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCS1.2017.8325954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

聚类是重要的数据挖掘技术之一。由于每个工作空间的数字化和全球化,大型数据集正在迅速生成。如此大的数据集聚类对传统的顺序聚类算法是一个挑战,因为它需要大量的执行时间来聚类这样的数据集。因此,分布式并行架构和算法有助于实现大型数据集聚类的性能和可扩展性要求。在本研究中,我们设计并实验了一种基于MapReduce编程模型的并行k-means算法,并将结果与顺序k-means算法进行了比较,用于不同大小文档数据集的聚类。结果表明,提出的k-means在聚类文档时获得了更高的性能,并且优于顺序k-means。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An evaluation of Hadoop cluster efficiency in document clustering using parallel K-means
One of the significant data mining techniques is clustering. Due to digitalization and globalization of each work space, large datasets are being generated rapidly. Such large dataset clustering is a challenge for traditional sequential clustering algorithms as it requires large execution time to cluster such datasets. Distributed parallel architectures and algorithms are thus helpful to achieve performance and scalability requirement of clustering large datasets. In this study, we design and experiment a parallel k-means algorithm using MapReduce programming model and compared the result with sequential k-means for clustering varying size of document dataset. The result demonstrates that proposed k-means obtains higher performance and outperformed sequential k-means while clustering documents.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信