人脸情感特征的提取

Y. He, Hongli Zhu
{"title":"人脸情感特征的提取","authors":"Y. He, Hongli Zhu","doi":"10.52267/ijaser.2021.2403","DOIUrl":null,"url":null,"abstract":"This paper introduces the face recognition dataset and the feature extraction techniques. and the deep learning method for face recognition will be introduced. The specific Pycharm software development platform is used, the system program is implemented by Keras, Open Cv, PyQt5 and other libraries, and the mini_XCEPITIOM convolutional neural network developed by Google is used to classify face emotions, The system can recognize the face by getting the picture from the camera in real time or by reading the input face, and the accuracy rate is about 65%.","PeriodicalId":153802,"journal":{"name":"International Journal of Applied Science and Engineering Review","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EXTRACTION OF EMOTIONAL FEATURES OF HUMAN FACE\",\"authors\":\"Y. He, Hongli Zhu\",\"doi\":\"10.52267/ijaser.2021.2403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces the face recognition dataset and the feature extraction techniques. and the deep learning method for face recognition will be introduced. The specific Pycharm software development platform is used, the system program is implemented by Keras, Open Cv, PyQt5 and other libraries, and the mini_XCEPITIOM convolutional neural network developed by Google is used to classify face emotions, The system can recognize the face by getting the picture from the camera in real time or by reading the input face, and the accuracy rate is about 65%.\",\"PeriodicalId\":153802,\"journal\":{\"name\":\"International Journal of Applied Science and Engineering Review\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Science and Engineering Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52267/ijaser.2021.2403\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Science and Engineering Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52267/ijaser.2021.2403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

介绍了人脸识别数据集及其特征提取技术。并介绍了人脸识别的深度学习方法。采用具体的Pycharm软件开发平台,系统程序由Keras、Open Cv、PyQt5等库实现,并采用Google开发的mini_XCEPITIOM卷积神经网络对人脸情绪进行分类,系统可以通过实时获取摄像头拍摄的图片或通过读取输入的人脸进行人脸识别,准确率在65%左右。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EXTRACTION OF EMOTIONAL FEATURES OF HUMAN FACE
This paper introduces the face recognition dataset and the feature extraction techniques. and the deep learning method for face recognition will be introduced. The specific Pycharm software development platform is used, the system program is implemented by Keras, Open Cv, PyQt5 and other libraries, and the mini_XCEPITIOM convolutional neural network developed by Google is used to classify face emotions, The system can recognize the face by getting the picture from the camera in real time or by reading the input face, and the accuracy rate is about 65%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信