{"title":"关于指数型的整个函数","authors":"S. Shah, W. Sisarcick","doi":"10.6028/JRES.075B.004","DOIUrl":null,"url":null,"abstract":"Le t J be a n en tire fun c ti o n a nd le t p. \"\" 1 and 1(1 , r)= {f:~ 1 f 11)(re iO) I \"dO} 1/\". for a U s uffic ie ntly la rge r, the n J is of ex pone nti a l type not exceeding. {2 log (l-t. ~) + 1 + log (2N) !} .. If thi s co ndition is re place d by re lated co nditi ons, th e n a lso is of expo ne nti a l t ype. An e ntire fun c tion f(z) is said to be of bounde d ind ex if and only if th ere exi sts a non-negative integer N (ind e pe nde nt of z) s uch thatO\"'j \",N j!-k! (1.1) for all k and all z, and the smallest s uc h integer N is calle d the index off(z) ([1], [4] , [5]).1 It is known that a function of bounde d inde x N is of ex ponenti al type not exceedin g N+ 1 [6] but that a function of expon e ntial type need not be of bounde d inde x. In fac t any e ntire fun c tion havin g ze ros of arbitrarily large multipli city is not of bound e d index and th ere exist fun c tion s with simple zeros and of exponential type whic h are not of bounded index [8]. In a recent paper [2] Fred Gross considers interesting variations of condition (1.1) and proves the following THEOREM A: Let f be entire and C a positive constant. If there exists a positive integer N such that for k=O, 1,. . , N, f satisfies one ofthefollowing,for all z with l z I sufficiently large:","PeriodicalId":166823,"journal":{"name":"Journal of Research of the National Bureau of Standards, Section B: Mathematical Sciences","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1971-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"On entire functions of exponential type\",\"authors\":\"S. Shah, W. Sisarcick\",\"doi\":\"10.6028/JRES.075B.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Le t J be a n en tire fun c ti o n a nd le t p. \\\"\\\" 1 and 1(1 , r)= {f:~ 1 f 11)(re iO) I \\\"dO} 1/\\\". for a U s uffic ie ntly la rge r, the n J is of ex pone nti a l type not exceeding. {2 log (l-t. ~) + 1 + log (2N) !} .. If thi s co ndition is re place d by re lated co nditi ons, th e n a lso is of expo ne nti a l t ype. An e ntire fun c tion f(z) is said to be of bounde d ind ex if and only if th ere exi sts a non-negative integer N (ind e pe nde nt of z) s uch thatO\\\"'j \\\",N j!-k! (1.1) for all k and all z, and the smallest s uc h integer N is calle d the index off(z) ([1], [4] , [5]).1 It is known that a function of bounde d inde x N is of ex ponenti al type not exceedin g N+ 1 [6] but that a function of expon e ntial type need not be of bounde d inde x. In fac t any e ntire fun c tion havin g ze ros of arbitrarily large multipli city is not of bound e d index and th ere exist fun c tion s with simple zeros and of exponential type whic h are not of bounded index [8]. In a recent paper [2] Fred Gross considers interesting variations of condition (1.1) and proves the following THEOREM A: Let f be entire and C a positive constant. If there exists a positive integer N such that for k=O, 1,. . , N, f satisfies one ofthefollowing,for all z with l z I sufficiently large:\",\"PeriodicalId\":166823,\"journal\":{\"name\":\"Journal of Research of the National Bureau of Standards, Section B: Mathematical Sciences\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1971-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Research of the National Bureau of Standards, Section B: Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6028/JRES.075B.004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Research of the National Bureau of Standards, Section B: Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6028/JRES.075B.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
摘要
让我成为一个快乐的人,让我成为一个快乐的人。”“1和1 (1 r) = {f f: 1 ~ 11)(重新iO)我“做}1 /”。对于一个美国人来说,如果一个人的流量小于1,那么这个人的流量就不会超过1。{2 log (l-t)~) + 1 + log (2N)} ..如果将此条件替换为相关的条件,则该条件也将是一个新的类型。一个完整的函数f(z)是有界的,当且仅当存在一个非负整数N(包括z的N次方)满足to "'j ",N j!-k!(1.1)对于所有k和所有z,最小的s (h整数N)称为d索引off(z) ([1], [4], [5]).1众所周知,bounde d印度x的函数N ponenti al交货类型不是exceedin g N + 1[6],但表示的函数e ntial bounde d印度x的类型不需要。在fac t e ntire有趣c任意大的构造每天g泽ros multipli城市不是绑定e d指数和th之前存在有趣的c与简单的0年代和指数型这不是有界指数[8]。在最近的一篇论文[2]中,Fred Gross考虑了条件(1.1)的有趣变化,并证明了以下定理a:设f为整,C为正常数。如果存在正整数N,使得k= 0, 1,。, N, f满足下列条件之一,对于所有z,且lzi足够大:
Le t J be a n en tire fun c ti o n a nd le t p. "" 1 and 1(1 , r)= {f:~ 1 f 11)(re iO) I "dO} 1/". for a U s uffic ie ntly la rge r, the n J is of ex pone nti a l type not exceeding. {2 log (l-t. ~) + 1 + log (2N) !} .. If thi s co ndition is re place d by re lated co nditi ons, th e n a lso is of expo ne nti a l t ype. An e ntire fun c tion f(z) is said to be of bounde d ind ex if and only if th ere exi sts a non-negative integer N (ind e pe nde nt of z) s uch thatO"'j ",N j!-k! (1.1) for all k and all z, and the smallest s uc h integer N is calle d the index off(z) ([1], [4] , [5]).1 It is known that a function of bounde d inde x N is of ex ponenti al type not exceedin g N+ 1 [6] but that a function of expon e ntial type need not be of bounde d inde x. In fac t any e ntire fun c tion havin g ze ros of arbitrarily large multipli city is not of bound e d index and th ere exist fun c tion s with simple zeros and of exponential type whic h are not of bounded index [8]. In a recent paper [2] Fred Gross considers interesting variations of condition (1.1) and proves the following THEOREM A: Let f be entire and C a positive constant. If there exists a positive integer N such that for k=O, 1,. . , N, f satisfies one ofthefollowing,for all z with l z I sufficiently large: