神经净化:识别和减轻神经网络中的后门攻击

Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao Zheng, Ben Y. Zhao
{"title":"神经净化:识别和减轻神经网络中的后门攻击","authors":"Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao Zheng, Ben Y. Zhao","doi":"10.1109/SP.2019.00031","DOIUrl":null,"url":null,"abstract":"Lack of transparency in deep neural networks (DNNs) make them susceptible to backdoor attacks, where hidden associations or triggers override normal classification to produce unexpected results. For example, a model with a backdoor always identifies a face as Bill Gates if a specific symbol is present in the input. Backdoors can stay hidden indefinitely until activated by an input, and present a serious security risk to many security or safety related applications, e.g. biometric authentication systems or self-driving cars. We present the first robust and generalizable detection and mitigation system for DNN backdoor attacks. Our techniques identify backdoors and reconstruct possible triggers. We identify multiple mitigation techniques via input filters, neuron pruning and unlearning. We demonstrate their efficacy via extensive experiments on a variety of DNNs, against two types of backdoor injection methods identified by prior work. Our techniques also prove robust against a number of variants of the backdoor attack.","PeriodicalId":272713,"journal":{"name":"2019 IEEE Symposium on Security and Privacy (SP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"945","resultStr":"{\"title\":\"Neural Cleanse: Identifying and Mitigating Backdoor Attacks in Neural Networks\",\"authors\":\"Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao Zheng, Ben Y. Zhao\",\"doi\":\"10.1109/SP.2019.00031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lack of transparency in deep neural networks (DNNs) make them susceptible to backdoor attacks, where hidden associations or triggers override normal classification to produce unexpected results. For example, a model with a backdoor always identifies a face as Bill Gates if a specific symbol is present in the input. Backdoors can stay hidden indefinitely until activated by an input, and present a serious security risk to many security or safety related applications, e.g. biometric authentication systems or self-driving cars. We present the first robust and generalizable detection and mitigation system for DNN backdoor attacks. Our techniques identify backdoors and reconstruct possible triggers. We identify multiple mitigation techniques via input filters, neuron pruning and unlearning. We demonstrate their efficacy via extensive experiments on a variety of DNNs, against two types of backdoor injection methods identified by prior work. Our techniques also prove robust against a number of variants of the backdoor attack.\",\"PeriodicalId\":272713,\"journal\":{\"name\":\"2019 IEEE Symposium on Security and Privacy (SP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"945\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Symposium on Security and Privacy (SP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SP.2019.00031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Symposium on Security and Privacy (SP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SP.2019.00031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 945

摘要

深度神经网络(dnn)缺乏透明度使其容易受到后门攻击,其中隐藏的关联或触发器会覆盖正常分类以产生意想不到的结果。例如,如果输入中出现特定的符号,带有后门的模型总是将人脸识别为比尔·盖茨。后门可以无限期地隐藏,直到被输入激活,并给许多安全或安全相关应用带来严重的安全风险,例如生物识别认证系统或自动驾驶汽车。我们提出了第一个针对DNN后门攻击的鲁棒和通用的检测和缓解系统。我们的技术可以识别后门并重建可能的触发点。我们通过输入滤波器、神经元修剪和学习来识别多种缓解技术。我们通过对多种dnn的广泛实验证明了它们的有效性,以对抗先前工作确定的两种后门注射方法。我们的技术也证明了对许多后门攻击变体的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural Cleanse: Identifying and Mitigating Backdoor Attacks in Neural Networks
Lack of transparency in deep neural networks (DNNs) make them susceptible to backdoor attacks, where hidden associations or triggers override normal classification to produce unexpected results. For example, a model with a backdoor always identifies a face as Bill Gates if a specific symbol is present in the input. Backdoors can stay hidden indefinitely until activated by an input, and present a serious security risk to many security or safety related applications, e.g. biometric authentication systems or self-driving cars. We present the first robust and generalizable detection and mitigation system for DNN backdoor attacks. Our techniques identify backdoors and reconstruct possible triggers. We identify multiple mitigation techniques via input filters, neuron pruning and unlearning. We demonstrate their efficacy via extensive experiments on a variety of DNNs, against two types of backdoor injection methods identified by prior work. Our techniques also prove robust against a number of variants of the backdoor attack.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信