J. S. Lundh, Hannah N. Masten, K. Sasaki, A. Jacobs, Zhe Cheng, J. Spencer, Lei Chen, J. Gallagher, A. Koehler, K. Konishi, S. Graham, A. Kuramata, K. Hobart, M. Tadjer
{"title":"用于下一代功率器件近结热管理的aln封顶P-(AlxGal-x)2O3/Ga2O3异质结构场效应晶体管","authors":"J. S. Lundh, Hannah N. Masten, K. Sasaki, A. Jacobs, Zhe Cheng, J. Spencer, Lei Chen, J. Gallagher, A. Koehler, K. Konishi, S. Graham, A. Kuramata, K. Hobart, M. Tadjer","doi":"10.1109/drc55272.2022.9855809","DOIUrl":null,"url":null,"abstract":"While the ultrawide bandgap (Eg~4.9 e V) and high critical electric field (E<inf>c</inf>~8 MV /cm) of ß-Ga<inf>2</inf>O<inf>3</inf> [1] has promising implications for power electronics, the very low bulk thermal conductivity (0.11-0.27 W/cm.K [2]) presents a formidable thermal challenge. For lateral devices, heat is typically generated within tens of nanometers of the semiconductor surface. Therefore, a pathway for efficient heat dissipation through the surface could substantially improve device-level thermal performance. In this work, we report the first experimental demonstration of top-side device-level thermal management of Ga<inf>2</inf>O<inf>3</inf>-based transistors by capping an (Al<inf>0.21</inf>Ga<inf>0.79</inf>)<inf>2</inf>O<inf>3</inf>/Ga<inf>2</inf>O<inf>3</inf> heterostructure field-effect transistor (HFET) with a ~400 nm thick sputter-deposited aluminum nitride (AlN) heat spreading layer. Compared to a reference HFET, we observed a ~30% reduction in device-level thermal resistance at the gate electrode.","PeriodicalId":200504,"journal":{"name":"2022 Device Research Conference (DRC)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AlN-capped P-(AlxGal-x)2O3/Ga2O3 heterostructure field-effect transistors for near-junction thermal management of next generation power devices\",\"authors\":\"J. S. Lundh, Hannah N. Masten, K. Sasaki, A. Jacobs, Zhe Cheng, J. Spencer, Lei Chen, J. Gallagher, A. Koehler, K. Konishi, S. Graham, A. Kuramata, K. Hobart, M. Tadjer\",\"doi\":\"10.1109/drc55272.2022.9855809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While the ultrawide bandgap (Eg~4.9 e V) and high critical electric field (E<inf>c</inf>~8 MV /cm) of ß-Ga<inf>2</inf>O<inf>3</inf> [1] has promising implications for power electronics, the very low bulk thermal conductivity (0.11-0.27 W/cm.K [2]) presents a formidable thermal challenge. For lateral devices, heat is typically generated within tens of nanometers of the semiconductor surface. Therefore, a pathway for efficient heat dissipation through the surface could substantially improve device-level thermal performance. In this work, we report the first experimental demonstration of top-side device-level thermal management of Ga<inf>2</inf>O<inf>3</inf>-based transistors by capping an (Al<inf>0.21</inf>Ga<inf>0.79</inf>)<inf>2</inf>O<inf>3</inf>/Ga<inf>2</inf>O<inf>3</inf> heterostructure field-effect transistor (HFET) with a ~400 nm thick sputter-deposited aluminum nitride (AlN) heat spreading layer. Compared to a reference HFET, we observed a ~30% reduction in device-level thermal resistance at the gate electrode.\",\"PeriodicalId\":200504,\"journal\":{\"name\":\"2022 Device Research Conference (DRC)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Device Research Conference (DRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/drc55272.2022.9855809\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Device Research Conference (DRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/drc55272.2022.9855809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
虽然ß-Ga2O3[1]的超宽带隙(Eg~4.9 e V)和高临界电场(Ec~8 MV /cm)在电力电子领域具有很好的应用前景,但其极低的体热导率(0.11-0.27 W/cm)具有良好的应用前景。k[2])提出了一个巨大的热挑战。对于横向器件,通常在半导体表面的几十纳米内产生热量。因此,通过表面有效散热的途径可以大大提高器件级热性能。在这项工作中,我们首次报道了用~400 nm厚的溅射沉积氮化铝(AlN)热扩散层覆盖(Al0.21Ga0.79)2O3/Ga2O3异质结构场效应晶体管(HFET)的顶部器件级热管理的实验演示。与参考HFET相比,我们观察到栅极的器件级热阻降低了约30%。
AlN-capped P-(AlxGal-x)2O3/Ga2O3 heterostructure field-effect transistors for near-junction thermal management of next generation power devices
While the ultrawide bandgap (Eg~4.9 e V) and high critical electric field (Ec~8 MV /cm) of ß-Ga2O3 [1] has promising implications for power electronics, the very low bulk thermal conductivity (0.11-0.27 W/cm.K [2]) presents a formidable thermal challenge. For lateral devices, heat is typically generated within tens of nanometers of the semiconductor surface. Therefore, a pathway for efficient heat dissipation through the surface could substantially improve device-level thermal performance. In this work, we report the first experimental demonstration of top-side device-level thermal management of Ga2O3-based transistors by capping an (Al0.21Ga0.79)2O3/Ga2O3 heterostructure field-effect transistor (HFET) with a ~400 nm thick sputter-deposited aluminum nitride (AlN) heat spreading layer. Compared to a reference HFET, we observed a ~30% reduction in device-level thermal resistance at the gate electrode.