用递归图分析计算机用户活动

T. Rybak, R. Mosdorf
{"title":"用递归图分析计算机用户活动","authors":"T. Rybak, R. Mosdorf","doi":"10.1109/ICBAKE.2009.30","DOIUrl":null,"url":null,"abstract":"We can currently observe trend of gathering vast amounts of data about systems and users behavior. Gathered data is analyzed to get insight about behavior of users and then to detect traits of users. Currently many different methods are used to analyze data and there is still no one best method for analyzing different parameters of computer systems. We use non-linear methods to analyze gathered data because we assume that computer system is the non-linear one because of inter-program dependencies in current multi-program, multi-user operating systems. To best describe behavior of entire system we choose number of interrupts per second as analyzed variable because this value shows overall state of activity of programs being run on the system. We show that using recurrence plot can show some similarities in behavior of system, and therefore can be used to detect similarities and differences in users behavior.","PeriodicalId":137627,"journal":{"name":"2009 International Conference on Biometrics and Kansei Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Computer Users Activity Analysis Using Recurrence Plot\",\"authors\":\"T. Rybak, R. Mosdorf\",\"doi\":\"10.1109/ICBAKE.2009.30\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We can currently observe trend of gathering vast amounts of data about systems and users behavior. Gathered data is analyzed to get insight about behavior of users and then to detect traits of users. Currently many different methods are used to analyze data and there is still no one best method for analyzing different parameters of computer systems. We use non-linear methods to analyze gathered data because we assume that computer system is the non-linear one because of inter-program dependencies in current multi-program, multi-user operating systems. To best describe behavior of entire system we choose number of interrupts per second as analyzed variable because this value shows overall state of activity of programs being run on the system. We show that using recurrence plot can show some similarities in behavior of system, and therefore can be used to detect similarities and differences in users behavior.\",\"PeriodicalId\":137627,\"journal\":{\"name\":\"2009 International Conference on Biometrics and Kansei Engineering\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Biometrics and Kansei Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICBAKE.2009.30\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Biometrics and Kansei Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBAKE.2009.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

目前我们可以观察到收集大量系统和用户行为数据的趋势。对收集到的数据进行分析,了解用户的行为,进而发现用户的特征。目前用于分析数据的方法很多,但对于计算机系统的不同参数,还没有一种最佳的分析方法。我们使用非线性方法来分析收集到的数据,因为我们假设计算机系统是非线性的,因为在当前的多程序、多用户操作系统中,程序间的依赖关系。为了最好地描述整个系统的行为,我们选择每秒中断数作为分析变量,因为该值显示了系统上运行的程序的总体活动状态。我们证明使用递归图可以显示系统行为的一些相似性,因此可以用来检测用户行为的相似性和差异性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computer Users Activity Analysis Using Recurrence Plot
We can currently observe trend of gathering vast amounts of data about systems and users behavior. Gathered data is analyzed to get insight about behavior of users and then to detect traits of users. Currently many different methods are used to analyze data and there is still no one best method for analyzing different parameters of computer systems. We use non-linear methods to analyze gathered data because we assume that computer system is the non-linear one because of inter-program dependencies in current multi-program, multi-user operating systems. To best describe behavior of entire system we choose number of interrupts per second as analyzed variable because this value shows overall state of activity of programs being run on the system. We show that using recurrence plot can show some similarities in behavior of system, and therefore can be used to detect similarities and differences in users behavior.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信