基于脑启发计算的电阻交叉棒CMOS尖峰间隔解码器的解析建模

Sahibia Kaur Vohra, Sherin A. Thomas, Mahendra Sakare, D. Das
{"title":"基于脑启发计算的电阻交叉棒CMOS尖峰间隔解码器的解析建模","authors":"Sahibia Kaur Vohra, Sherin A. Thomas, Mahendra Sakare, D. Das","doi":"10.1109/VDAT53777.2021.9600953","DOIUrl":null,"url":null,"abstract":"The enhanced performance of neuromorphic computing over conventional Von Neumann computing results in high accuracy, energy and area efficient operations. The energy efficient neuromorphic systems process the information in the form of spikes. Neural coding schemes is the critical aspect of neuromorphic computing as it defines the relationship between the input sensory information and the spike train. Inter-spike-interval (ISI) encoding shows the advantages of high information density and energy efficiency over rate encoding. This paper shows the analytical modelling of Inter Spike Interval (ISI) decoding scheme. This decoding scheme uses a CMOS implemented sample and hold circuit for ISI to voltage transformation. The circuit is implemented in the Cadence Virtuoso environment using CMOS 180nm technology for analytical verification of the simulation results. Also, to demonstrate the robustness of the decoder circuit, Monte Carlo simulation is done for mismatch and process variation.","PeriodicalId":122393,"journal":{"name":"2021 25th International Symposium on VLSI Design and Test (VDAT)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analytical Modelling of a CMOS Inter Spike Interval Decoder for Resistive Crossbar based Brain Inspired Computing\",\"authors\":\"Sahibia Kaur Vohra, Sherin A. Thomas, Mahendra Sakare, D. Das\",\"doi\":\"10.1109/VDAT53777.2021.9600953\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The enhanced performance of neuromorphic computing over conventional Von Neumann computing results in high accuracy, energy and area efficient operations. The energy efficient neuromorphic systems process the information in the form of spikes. Neural coding schemes is the critical aspect of neuromorphic computing as it defines the relationship between the input sensory information and the spike train. Inter-spike-interval (ISI) encoding shows the advantages of high information density and energy efficiency over rate encoding. This paper shows the analytical modelling of Inter Spike Interval (ISI) decoding scheme. This decoding scheme uses a CMOS implemented sample and hold circuit for ISI to voltage transformation. The circuit is implemented in the Cadence Virtuoso environment using CMOS 180nm technology for analytical verification of the simulation results. Also, to demonstrate the robustness of the decoder circuit, Monte Carlo simulation is done for mismatch and process variation.\",\"PeriodicalId\":122393,\"journal\":{\"name\":\"2021 25th International Symposium on VLSI Design and Test (VDAT)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 25th International Symposium on VLSI Design and Test (VDAT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VDAT53777.2021.9600953\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 25th International Symposium on VLSI Design and Test (VDAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VDAT53777.2021.9600953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

与传统的冯·诺依曼计算相比,神经形态计算的性能得到了提高,运算精度高,能量和面积效率高。能量高效的神经形态系统以尖峰的形式处理信息。神经编码方案是神经形态计算的关键方面,因为它定义了输入的感觉信息和脉冲序列之间的关系。与速率编码相比,ISI编码具有高信息密度和高能效的优点。本文给出了脉冲间隔(ISI)译码方案的解析模型。该解码方案使用CMOS实现的采样和保持电路进行ISI到电压的转换。该电路在Cadence Virtuoso环境中实现,采用CMOS 180nm技术对仿真结果进行分析验证。此外,为了证明解码器电路的鲁棒性,对失配和过程变化进行了蒙特卡罗模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analytical Modelling of a CMOS Inter Spike Interval Decoder for Resistive Crossbar based Brain Inspired Computing
The enhanced performance of neuromorphic computing over conventional Von Neumann computing results in high accuracy, energy and area efficient operations. The energy efficient neuromorphic systems process the information in the form of spikes. Neural coding schemes is the critical aspect of neuromorphic computing as it defines the relationship between the input sensory information and the spike train. Inter-spike-interval (ISI) encoding shows the advantages of high information density and energy efficiency over rate encoding. This paper shows the analytical modelling of Inter Spike Interval (ISI) decoding scheme. This decoding scheme uses a CMOS implemented sample and hold circuit for ISI to voltage transformation. The circuit is implemented in the Cadence Virtuoso environment using CMOS 180nm technology for analytical verification of the simulation results. Also, to demonstrate the robustness of the decoder circuit, Monte Carlo simulation is done for mismatch and process variation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信