为听障人士设计的AI耳机

Hyun-Don Kim
{"title":"为听障人士设计的AI耳机","authors":"Hyun-Don Kim","doi":"10.29279/jitr.2022.27.4.21","DOIUrl":null,"url":null,"abstract":"We designed an artificial intelligence (AI) headphone for hearing impaired people and proposed a convolution neural network (CNN)-based sound classifier with a low computational network that can run on an embedded PC (Raspberry Pi 4B) in real-time. Because our AI headphone can classify 20 types of dangerous or environmental sounds (e.g., siren, car horn, scream, gunshot, etc.) and recognize specific voice keywords (e.g., person name, be careful!, stop!, etc.), it can assist hearing impaired people in reducing the risk of accident exposure and improving convenience. In addition, we use vibration codes to notify the hearing impaired person of detected information to the vibration motors attached to both sides of the headphone. We confirm that our proposed sound classifier achieves an average accuracy rate of approximately 95.14%, and enables real-time processing on the Raspberry Pi 4B because it requires an average computation time of approximately 0.139s with audio recording data for 5.12s.","PeriodicalId":383838,"journal":{"name":"Korea Industrial Technology Convergence Society","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AI Headphone Design for the Hearing-Impaired\",\"authors\":\"Hyun-Don Kim\",\"doi\":\"10.29279/jitr.2022.27.4.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We designed an artificial intelligence (AI) headphone for hearing impaired people and proposed a convolution neural network (CNN)-based sound classifier with a low computational network that can run on an embedded PC (Raspberry Pi 4B) in real-time. Because our AI headphone can classify 20 types of dangerous or environmental sounds (e.g., siren, car horn, scream, gunshot, etc.) and recognize specific voice keywords (e.g., person name, be careful!, stop!, etc.), it can assist hearing impaired people in reducing the risk of accident exposure and improving convenience. In addition, we use vibration codes to notify the hearing impaired person of detected information to the vibration motors attached to both sides of the headphone. We confirm that our proposed sound classifier achieves an average accuracy rate of approximately 95.14%, and enables real-time processing on the Raspberry Pi 4B because it requires an average computation time of approximately 0.139s with audio recording data for 5.12s.\",\"PeriodicalId\":383838,\"journal\":{\"name\":\"Korea Industrial Technology Convergence Society\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Korea Industrial Technology Convergence Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29279/jitr.2022.27.4.21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korea Industrial Technology Convergence Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29279/jitr.2022.27.4.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们为听障人士设计了一款人工智能(AI)耳机,并提出了一种基于卷积神经网络(CNN)的声音分类器,该分类器具有低计算网络,可在嵌入式PC (Raspberry Pi 4B)上实时运行。因为我们的AI耳机可以对20种危险或环境声音(如警笛、汽车喇叭声、尖叫声、枪声等)进行分类,并识别特定的语音关键字(如人名),小心!,停止!等),可协助听障人士减少意外暴露风险,提高便利性。此外,我们使用振动码将检测到的信息通知给耳机两侧的振动电机。我们确认我们提出的声音分类器实现了大约95.14%的平均准确率,并且能够在Raspberry Pi 4B上进行实时处理,因为它需要大约0.139秒的平均计算时间,音频记录数据为5.12秒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AI Headphone Design for the Hearing-Impaired
We designed an artificial intelligence (AI) headphone for hearing impaired people and proposed a convolution neural network (CNN)-based sound classifier with a low computational network that can run on an embedded PC (Raspberry Pi 4B) in real-time. Because our AI headphone can classify 20 types of dangerous or environmental sounds (e.g., siren, car horn, scream, gunshot, etc.) and recognize specific voice keywords (e.g., person name, be careful!, stop!, etc.), it can assist hearing impaired people in reducing the risk of accident exposure and improving convenience. In addition, we use vibration codes to notify the hearing impaired person of detected information to the vibration motors attached to both sides of the headphone. We confirm that our proposed sound classifier achieves an average accuracy rate of approximately 95.14%, and enables real-time processing on the Raspberry Pi 4B because it requires an average computation time of approximately 0.139s with audio recording data for 5.12s.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信