代码桥接分类器(CBC):使CNN分类器对对抗性攻击具有鲁棒性的低或负开销防御

F. Behnia, Ali Mirzaeian, M. Sabokrou, S. Manoj, T. Mohsenin, Khaled N. Khasawneh, Liang Zhao, H. Homayoun, Avesta Sasan
{"title":"代码桥接分类器(CBC):使CNN分类器对对抗性攻击具有鲁棒性的低或负开销防御","authors":"F. Behnia, Ali Mirzaeian, M. Sabokrou, S. Manoj, T. Mohsenin, Khaled N. Khasawneh, Liang Zhao, H. Homayoun, Avesta Sasan","doi":"10.1109/ISQED48828.2020.9136987","DOIUrl":null,"url":null,"abstract":"In this paper, we propose Code-Bridged Classifier (CBC), a framework for making a Convolutional Neural Network (CNNs) robust against adversarial attacks without increasing or even by decreasing the overall models' computational complexity. More specifically, we propose a stacked encoder-convolutional model, in which the input image is first encoded by the encoder module of a denoising auto-encoder, and then the resulting latent representation (without being decoded) is fed to a reduced complexity CNN for image classification. We illustrate that this network not only is more robust to adversarial examples but also has a significantly lower computational complexity when compared to the prior art defenses.","PeriodicalId":225828,"journal":{"name":"2020 21st International Symposium on Quality Electronic Design (ISQED)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Code-Bridged Classifier (CBC): A Low or Negative Overhead Defense for Making a CNN Classifier Robust Against Adversarial Attacks\",\"authors\":\"F. Behnia, Ali Mirzaeian, M. Sabokrou, S. Manoj, T. Mohsenin, Khaled N. Khasawneh, Liang Zhao, H. Homayoun, Avesta Sasan\",\"doi\":\"10.1109/ISQED48828.2020.9136987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose Code-Bridged Classifier (CBC), a framework for making a Convolutional Neural Network (CNNs) robust against adversarial attacks without increasing or even by decreasing the overall models' computational complexity. More specifically, we propose a stacked encoder-convolutional model, in which the input image is first encoded by the encoder module of a denoising auto-encoder, and then the resulting latent representation (without being decoded) is fed to a reduced complexity CNN for image classification. We illustrate that this network not only is more robust to adversarial examples but also has a significantly lower computational complexity when compared to the prior art defenses.\",\"PeriodicalId\":225828,\"journal\":{\"name\":\"2020 21st International Symposium on Quality Electronic Design (ISQED)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 21st International Symposium on Quality Electronic Design (ISQED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISQED48828.2020.9136987\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 21st International Symposium on Quality Electronic Design (ISQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED48828.2020.9136987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

在本文中,我们提出了代码桥式分类器(CBC),这是一个使卷积神经网络(cnn)对对抗性攻击具有鲁棒性的框架,而不会增加甚至降低整体模型的计算复杂度。更具体地说,我们提出了一个堆叠的编码器-卷积模型,其中输入图像首先由去噪自编码器的编码器模块编码,然后将得到的潜在表示(未被解码)馈送到降低复杂度的CNN中进行图像分类。我们表明,与现有技术防御相比,该网络不仅对对抗性示例更具鲁棒性,而且具有显着降低的计算复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Code-Bridged Classifier (CBC): A Low or Negative Overhead Defense for Making a CNN Classifier Robust Against Adversarial Attacks
In this paper, we propose Code-Bridged Classifier (CBC), a framework for making a Convolutional Neural Network (CNNs) robust against adversarial attacks without increasing or even by decreasing the overall models' computational complexity. More specifically, we propose a stacked encoder-convolutional model, in which the input image is first encoded by the encoder module of a denoising auto-encoder, and then the resulting latent representation (without being decoded) is fed to a reduced complexity CNN for image classification. We illustrate that this network not only is more robust to adversarial examples but also has a significantly lower computational complexity when compared to the prior art defenses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信