用机器学习方法对芯片多处理器的功率和性能进行建模

Changshu Zhang, A. Ravindran, Kushal Datta, A. Mukherjee, B. Joshi
{"title":"用机器学习方法对芯片多处理器的功率和性能进行建模","authors":"Changshu Zhang, A. Ravindran, Kushal Datta, A. Mukherjee, B. Joshi","doi":"10.1109/ICCD.2011.6081374","DOIUrl":null,"url":null,"abstract":"Exploring the vast microarchitectural design space of chip multiprocessors (CMPs) through the traditional approach of exhaustive simulations is impractical due to the long simulation times and its super-linear increase with core scaling. Kernel based statistical machine learning algorithms can potentially help predict multiple performance metrics with non-linear dependence on the CMP design parameters. In this paper, we describe and evaluate a machine learning framework that uses Kernel Canonical Correlation Analysis (KCCA) to predict the power dissipation and performance of CMPs. Specifically we focus on modeling the microarchitecture of a highly multithreaded CMP targeted towards packet processing. We use a cycle accurate CMP simulator to generate training samples required to build the model. Despite sampling only 0.016% of the design space we observe a median error of 6–10% in the KCCA predicted processor power dissipation and performance.","PeriodicalId":354015,"journal":{"name":"2011 IEEE 29th International Conference on Computer Design (ICCD)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A machine learning approach to modeling power and performance of chip multiprocessors\",\"authors\":\"Changshu Zhang, A. Ravindran, Kushal Datta, A. Mukherjee, B. Joshi\",\"doi\":\"10.1109/ICCD.2011.6081374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Exploring the vast microarchitectural design space of chip multiprocessors (CMPs) through the traditional approach of exhaustive simulations is impractical due to the long simulation times and its super-linear increase with core scaling. Kernel based statistical machine learning algorithms can potentially help predict multiple performance metrics with non-linear dependence on the CMP design parameters. In this paper, we describe and evaluate a machine learning framework that uses Kernel Canonical Correlation Analysis (KCCA) to predict the power dissipation and performance of CMPs. Specifically we focus on modeling the microarchitecture of a highly multithreaded CMP targeted towards packet processing. We use a cycle accurate CMP simulator to generate training samples required to build the model. Despite sampling only 0.016% of the design space we observe a median error of 6–10% in the KCCA predicted processor power dissipation and performance.\",\"PeriodicalId\":354015,\"journal\":{\"name\":\"2011 IEEE 29th International Conference on Computer Design (ICCD)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 29th International Conference on Computer Design (ICCD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCD.2011.6081374\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 29th International Conference on Computer Design (ICCD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2011.6081374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

由于仿真时间长且随内核缩放呈超线性增长,通过传统的穷极仿真方法来探索芯片多处理器(cmp)广阔的微架构设计空间是不切实际的。基于核的统计机器学习算法可以潜在地帮助预测与CMP设计参数非线性依赖的多个性能指标。在本文中,我们描述和评估了一个机器学习框架,该框架使用核典型相关分析(KCCA)来预测cmp的功耗和性能。具体来说,我们关注的是针对数据包处理的高度多线程CMP的微架构建模。我们使用周期精确的CMP模拟器来生成构建模型所需的训练样本。尽管只采样了0.016%的设计空间,但我们观察到KCCA预测处理器功耗和性能的中位数误差为6-10%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A machine learning approach to modeling power and performance of chip multiprocessors
Exploring the vast microarchitectural design space of chip multiprocessors (CMPs) through the traditional approach of exhaustive simulations is impractical due to the long simulation times and its super-linear increase with core scaling. Kernel based statistical machine learning algorithms can potentially help predict multiple performance metrics with non-linear dependence on the CMP design parameters. In this paper, we describe and evaluate a machine learning framework that uses Kernel Canonical Correlation Analysis (KCCA) to predict the power dissipation and performance of CMPs. Specifically we focus on modeling the microarchitecture of a highly multithreaded CMP targeted towards packet processing. We use a cycle accurate CMP simulator to generate training samples required to build the model. Despite sampling only 0.016% of the design space we observe a median error of 6–10% in the KCCA predicted processor power dissipation and performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信