{"title":"Melampus:儿童心理筛查的深度学习模型","authors":"W. Silva, Mateus Raeder","doi":"10.5335/RBCA.V10I3.8471","DOIUrl":null,"url":null,"abstract":"Embora problemas relacionados à saúde mental usualmente tenham início durante a infância ou adolescência, apenas uma pequena parcela desta população recebe diagnóstico e tratamento adequado. Uma das causas para a baixa taxa de identificação de desordens mentais é a falta de instrumentos especializados nesta tarefa, especialmente ferramentas que reduzam o custo e o tempo necessário para a execução de processos de triagem psicológica. Na literatura recente, muitos autores vêm analisando como o aprendizado de máquina pode contribuir para a construção de instrumentos de avaliação psicológica, contudo poucas pesquisas se propõem a construir ferramentas válidas para grupos compostos majoritariamente por crianças. O presente trabalho propõe um modelo de ferramenta para apoio à triagem psicológica infantil baseada em testes clínicos e deep learning. Tal modelo foi avaliado através de uma implementação que combina o uso de Redes Neurais Convolucionais e um sistema de escalas clínicas para avaliação do Desenho da Figura Humana. Os resultados apresentados pelos modelos de classificação treinados demonstraram bons índices de acerto considerando-se a pequena amostra disponível, o que sugere que ferramentas de deep learning podem ser adequadas para o cenário proposto.","PeriodicalId":129104,"journal":{"name":"Revista Brasileira de Computaçãoo Aplicada","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Melampus: um modelo deep learning para triagem psicológica infantil\",\"authors\":\"W. Silva, Mateus Raeder\",\"doi\":\"10.5335/RBCA.V10I3.8471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Embora problemas relacionados à saúde mental usualmente tenham início durante a infância ou adolescência, apenas uma pequena parcela desta população recebe diagnóstico e tratamento adequado. Uma das causas para a baixa taxa de identificação de desordens mentais é a falta de instrumentos especializados nesta tarefa, especialmente ferramentas que reduzam o custo e o tempo necessário para a execução de processos de triagem psicológica. Na literatura recente, muitos autores vêm analisando como o aprendizado de máquina pode contribuir para a construção de instrumentos de avaliação psicológica, contudo poucas pesquisas se propõem a construir ferramentas válidas para grupos compostos majoritariamente por crianças. O presente trabalho propõe um modelo de ferramenta para apoio à triagem psicológica infantil baseada em testes clínicos e deep learning. Tal modelo foi avaliado através de uma implementação que combina o uso de Redes Neurais Convolucionais e um sistema de escalas clínicas para avaliação do Desenho da Figura Humana. Os resultados apresentados pelos modelos de classificação treinados demonstraram bons índices de acerto considerando-se a pequena amostra disponível, o que sugere que ferramentas de deep learning podem ser adequadas para o cenário proposto.\",\"PeriodicalId\":129104,\"journal\":{\"name\":\"Revista Brasileira de Computaçãoo Aplicada\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Brasileira de Computaçãoo Aplicada\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5335/RBCA.V10I3.8471\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Brasileira de Computaçãoo Aplicada","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5335/RBCA.V10I3.8471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Melampus: um modelo deep learning para triagem psicológica infantil
Embora problemas relacionados à saúde mental usualmente tenham início durante a infância ou adolescência, apenas uma pequena parcela desta população recebe diagnóstico e tratamento adequado. Uma das causas para a baixa taxa de identificação de desordens mentais é a falta de instrumentos especializados nesta tarefa, especialmente ferramentas que reduzam o custo e o tempo necessário para a execução de processos de triagem psicológica. Na literatura recente, muitos autores vêm analisando como o aprendizado de máquina pode contribuir para a construção de instrumentos de avaliação psicológica, contudo poucas pesquisas se propõem a construir ferramentas válidas para grupos compostos majoritariamente por crianças. O presente trabalho propõe um modelo de ferramenta para apoio à triagem psicológica infantil baseada em testes clínicos e deep learning. Tal modelo foi avaliado através de uma implementação que combina o uso de Redes Neurais Convolucionais e um sistema de escalas clínicas para avaliação do Desenho da Figura Humana. Os resultados apresentados pelos modelos de classificação treinados demonstraram bons índices de acerto considerando-se a pequena amostra disponível, o que sugere que ferramentas de deep learning podem ser adequadas para o cenário proposto.