基于马尔可夫的自动术语提取

Zili Zhou, Yanna Wang, Junzhong Gu
{"title":"基于马尔可夫的自动术语提取","authors":"Zili Zhou, Yanna Wang, Junzhong Gu","doi":"10.1109/FBIE.2008.84","DOIUrl":null,"url":null,"abstract":"This paper presents an automatic term extraction method based on Markov process. The method aims to extract multi-word domain terms from English corpora. The paper proves that the extracting term process is a Markov chain firstly, and then gives the steps of the Markov-based method. In order to evaluate our method, we use a corpus related to computer science got by Web crawlers, and extract domain terms by methods introduced in the paper. The experiment data shows that our method out performs other methods.","PeriodicalId":415908,"journal":{"name":"2008 International Seminar on Future BioMedical Information Engineering","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Markov-Based Automatic Term Extraction\",\"authors\":\"Zili Zhou, Yanna Wang, Junzhong Gu\",\"doi\":\"10.1109/FBIE.2008.84\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an automatic term extraction method based on Markov process. The method aims to extract multi-word domain terms from English corpora. The paper proves that the extracting term process is a Markov chain firstly, and then gives the steps of the Markov-based method. In order to evaluate our method, we use a corpus related to computer science got by Web crawlers, and extract domain terms by methods introduced in the paper. The experiment data shows that our method out performs other methods.\",\"PeriodicalId\":415908,\"journal\":{\"name\":\"2008 International Seminar on Future BioMedical Information Engineering\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 International Seminar on Future BioMedical Information Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FBIE.2008.84\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Seminar on Future BioMedical Information Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FBIE.2008.84","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种基于马尔可夫过程的术语自动提取方法。该方法旨在从英语语料库中提取多词领域术语。首先证明了提取项的过程是一个马尔可夫链,然后给出了基于马尔可夫方法的步骤。为了评估我们的方法,我们使用网络爬虫获得的计算机科学相关语料库,并使用本文介绍的方法提取领域术语。实验数据表明,该方法优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Markov-Based Automatic Term Extraction
This paper presents an automatic term extraction method based on Markov process. The method aims to extract multi-word domain terms from English corpora. The paper proves that the extracting term process is a Markov chain firstly, and then gives the steps of the Markov-based method. In order to evaluate our method, we use a corpus related to computer science got by Web crawlers, and extract domain terms by methods introduced in the paper. The experiment data shows that our method out performs other methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信