遗传刚性,分离和密度:纪念I.G.罗森伯格教授

L. Haddad, M. Miyakawa, M. Pouzet, H. Tatsumi
{"title":"遗传刚性,分离和密度:纪念I.G.罗森伯格教授","authors":"L. Haddad, M. Miyakawa, M. Pouzet, H. Tatsumi","doi":"10.1109/ISMVL51352.2021.00020","DOIUrl":null,"url":null,"abstract":"We continue the investigation of systems of hereditarily rigid relations started in Couceiro, Haddad, Pouzet and Schölzel [1]. We observe that on a set <tex>$V$</tex> with <tex>$m$</tex> elements, there is a hereditarily rigid set <tex>$\\mathcal{R}$</tex> made of <tex>$n$</tex> tournaments if and only if <tex>$m(m-1)\\leq 2^{n}$</tex>. We ask if the same inequality holds when the tournaments are replaced by linear orders. This problem has an equivalent formulation in terms of separation of linear orders. Let <tex>$h_{\\text{Lin}}(m)$</tex> be the least cardinal <tex>$n$</tex> such that there is a family <tex>$\\mathcal{R}$</tex> of <tex>$n$</tex> linear orders on an <tex>$m$</tex>-element set <tex>$V$</tex> such that any two distinct ordered pairs of distinct elements of <tex>$V$</tex> are separated by some member of <tex>$\\mathcal{R}$</tex>, then <tex>$[\\log_{2}(m(m-1))]\\leq h_{\\text{Lin}}(m)$</tex> with equality if <tex>$m\\leq 7$</tex>. We ask whether the equality holds for every <tex>$m$</tex>. We prove that <tex>$h_{\\text{Lin}}(m+1)\\leq h_{\\text{Lin}}(m)+1$</tex>. If <tex>$V$</tex> is infinite, we show that <tex>$h_{\\text{Lin}}(m)=\\aleph_{0}$</tex> for <tex>$m\\leq 2^{\\aleph_{0}}$</tex>. More generally, we prove that the two equalities <tex>$h_{\\text{Lin}}(m)=log_{2}(m)=d$</tex> (Lin <tex>$(V)$</tex>) hold, where <tex>$\\log_{2}(m)$</tex> is the least cardinal <tex>$\\mu$</tex> such that <tex>$m\\leq 2^{\\mu}$</tex>, and <tex>$d$</tex> (Lin <tex>$(V)$</tex>) is the topological density of the set Lin (V) of linear orders on <tex>$V$</tex> (viewed as a subset of the power set <tex>$\\mathcal{P}(V\\times V)$</tex> equipped with the product topology). These equalities follow from the Generalized Continuum Hypothesis, but we do not know whether they hold without any set theoretical hypothesis.","PeriodicalId":129346,"journal":{"name":"2021 IEEE 51st International Symposium on Multiple-Valued Logic (ISMVL)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hereditary rigidity, separation and density: In memory of Professor I.G. Rosenberg\",\"authors\":\"L. Haddad, M. Miyakawa, M. Pouzet, H. Tatsumi\",\"doi\":\"10.1109/ISMVL51352.2021.00020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We continue the investigation of systems of hereditarily rigid relations started in Couceiro, Haddad, Pouzet and Schölzel [1]. We observe that on a set <tex>$V$</tex> with <tex>$m$</tex> elements, there is a hereditarily rigid set <tex>$\\\\mathcal{R}$</tex> made of <tex>$n$</tex> tournaments if and only if <tex>$m(m-1)\\\\leq 2^{n}$</tex>. We ask if the same inequality holds when the tournaments are replaced by linear orders. This problem has an equivalent formulation in terms of separation of linear orders. Let <tex>$h_{\\\\text{Lin}}(m)$</tex> be the least cardinal <tex>$n$</tex> such that there is a family <tex>$\\\\mathcal{R}$</tex> of <tex>$n$</tex> linear orders on an <tex>$m$</tex>-element set <tex>$V$</tex> such that any two distinct ordered pairs of distinct elements of <tex>$V$</tex> are separated by some member of <tex>$\\\\mathcal{R}$</tex>, then <tex>$[\\\\log_{2}(m(m-1))]\\\\leq h_{\\\\text{Lin}}(m)$</tex> with equality if <tex>$m\\\\leq 7$</tex>. We ask whether the equality holds for every <tex>$m$</tex>. We prove that <tex>$h_{\\\\text{Lin}}(m+1)\\\\leq h_{\\\\text{Lin}}(m)+1$</tex>. If <tex>$V$</tex> is infinite, we show that <tex>$h_{\\\\text{Lin}}(m)=\\\\aleph_{0}$</tex> for <tex>$m\\\\leq 2^{\\\\aleph_{0}}$</tex>. More generally, we prove that the two equalities <tex>$h_{\\\\text{Lin}}(m)=log_{2}(m)=d$</tex> (Lin <tex>$(V)$</tex>) hold, where <tex>$\\\\log_{2}(m)$</tex> is the least cardinal <tex>$\\\\mu$</tex> such that <tex>$m\\\\leq 2^{\\\\mu}$</tex>, and <tex>$d$</tex> (Lin <tex>$(V)$</tex>) is the topological density of the set Lin (V) of linear orders on <tex>$V$</tex> (viewed as a subset of the power set <tex>$\\\\mathcal{P}(V\\\\times V)$</tex> equipped with the product topology). These equalities follow from the Generalized Continuum Hypothesis, but we do not know whether they hold without any set theoretical hypothesis.\",\"PeriodicalId\":129346,\"journal\":{\"name\":\"2021 IEEE 51st International Symposium on Multiple-Valued Logic (ISMVL)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 51st International Symposium on Multiple-Valued Logic (ISMVL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL51352.2021.00020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 51st International Symposium on Multiple-Valued Logic (ISMVL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL51352.2021.00020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们继续研究始于Couceiro、Haddad、Pouzet和Schölzel[1]的遗传刚性关系系统。我们在一个集合上观察到 $V$ 有 $m$ 元素,有一个遗传的刚性集合 $\mathcal{R}$ 由…制成 $n$ 比赛当且仅当 $m(m-1)\leq 2^{n}$. 我们要问的是,当比赛被线性顺序取代时,同样的不等式是否成立。这个问题有一个关于线性阶分离的等价公式。让 $h_{\text{Lin}}(m)$ 做最小的基数 $n$ 这样就有了一个家庭 $\mathcal{R}$ 的 $n$ 上的线性阶 $m$-元素集 $V$ 使得任意两个不同的有序对的不同元素 $V$ 被某个元素分隔开 $\mathcal{R}$那么, $[\log_{2}(m(m-1))]\leq h_{\text{Lin}}(m)$ 与之相等 $m\leq 7$. 我们问这个等式是否对每一个都成立 $m$. 我们证明 $h_{\text{Lin}}(m+1)\leq h_{\text{Lin}}(m)+1$. 如果 $V$ 是无限的,我们证明了吗 $h_{\text{Lin}}(m)=\aleph_{0}$ 为了 $m\leq 2^{\aleph_{0}}$. 更一般地说,我们证明了这两个等式 $h_{\text{Lin}}(m)=log_{2}(m)=d$ (林 $(V)$) hold, hold $\log_{2}(m)$ 是最小基数 $\mu$ 这样 $m\leq 2^{\mu}$,和 $d$ (林 $(V)$)为上线性阶的集合Lin (V)的拓扑密度 $V$ (被看作是幂集的子集) $\mathcal{P}(V\times V)$ 配备产品拓扑结构)。这些等式是从广义连续统假设推导出来的,但我们不知道在没有任何理论假设的情况下它们是否成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hereditary rigidity, separation and density: In memory of Professor I.G. Rosenberg
We continue the investigation of systems of hereditarily rigid relations started in Couceiro, Haddad, Pouzet and Schölzel [1]. We observe that on a set $V$ with $m$ elements, there is a hereditarily rigid set $\mathcal{R}$ made of $n$ tournaments if and only if $m(m-1)\leq 2^{n}$. We ask if the same inequality holds when the tournaments are replaced by linear orders. This problem has an equivalent formulation in terms of separation of linear orders. Let $h_{\text{Lin}}(m)$ be the least cardinal $n$ such that there is a family $\mathcal{R}$ of $n$ linear orders on an $m$-element set $V$ such that any two distinct ordered pairs of distinct elements of $V$ are separated by some member of $\mathcal{R}$, then $[\log_{2}(m(m-1))]\leq h_{\text{Lin}}(m)$ with equality if $m\leq 7$. We ask whether the equality holds for every $m$. We prove that $h_{\text{Lin}}(m+1)\leq h_{\text{Lin}}(m)+1$. If $V$ is infinite, we show that $h_{\text{Lin}}(m)=\aleph_{0}$ for $m\leq 2^{\aleph_{0}}$. More generally, we prove that the two equalities $h_{\text{Lin}}(m)=log_{2}(m)=d$ (Lin $(V)$) hold, where $\log_{2}(m)$ is the least cardinal $\mu$ such that $m\leq 2^{\mu}$, and $d$ (Lin $(V)$) is the topological density of the set Lin (V) of linear orders on $V$ (viewed as a subset of the power set $\mathcal{P}(V\times V)$ equipped with the product topology). These equalities follow from the Generalized Continuum Hypothesis, but we do not know whether they hold without any set theoretical hypothesis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信