边缘云连续体中量子计算的架构愿景

Alireza Furutanpey, Johanna Barzen, Marvin Bechtold, S. Dustdar, F. Leymann, Philipp Raith, Felix Truger
{"title":"边缘云连续体中量子计算的架构愿景","authors":"Alireza Furutanpey, Johanna Barzen, Marvin Bechtold, S. Dustdar, F. Leymann, Philipp Raith, Felix Truger","doi":"10.1109/QSW59989.2023.00021","DOIUrl":null,"url":null,"abstract":"Quantum processing units (QPUs) are currently exclusively available from cloud vendors. However, with recent advancements, hosting QPUs will soon be possible everywhere. Existing work has yet to draw from research in edge computing to explore systems exploiting mobile QPUs, or how hybrid applications can benefit from distributed heterogeneous resources. Hence, this work presents an architecture for Quantum Computing in the edge-cloud continuum. We discuss the necessity, challenges, and solution approaches for extending existing work on classical edge computing to integrate QPUs. We describe how warm-starting allows defining workflows that exploit the hierarchical resources spread across the continuum. Then, we introduce a distributed inference engine with hybrid classical-quantum neural networks (QNNs) to aid system designers in accommodating applications with complex requirements that incur the highest degree of heterogeneity. We propose solutions focusing on classical layer partitioning and quantum circuit cutting to demonstrate the potential of utilizing classical and quantum computation across the continuum. To evaluate the importance and feasibility of our vision, we provide a proof of concept that exemplifies how extending a classical partition method to integrate quantum circuits can improve the solution quality. Specifically, we implement a split neural network with optional hybrid QNN predictors. Our results show that extending classical methods with QNNs is viable and promising for future work.","PeriodicalId":254476,"journal":{"name":"2023 IEEE International Conference on Quantum Software (QSW)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Architectural Vision for Quantum Computing in the Edge-Cloud Continuum\",\"authors\":\"Alireza Furutanpey, Johanna Barzen, Marvin Bechtold, S. Dustdar, F. Leymann, Philipp Raith, Felix Truger\",\"doi\":\"10.1109/QSW59989.2023.00021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum processing units (QPUs) are currently exclusively available from cloud vendors. However, with recent advancements, hosting QPUs will soon be possible everywhere. Existing work has yet to draw from research in edge computing to explore systems exploiting mobile QPUs, or how hybrid applications can benefit from distributed heterogeneous resources. Hence, this work presents an architecture for Quantum Computing in the edge-cloud continuum. We discuss the necessity, challenges, and solution approaches for extending existing work on classical edge computing to integrate QPUs. We describe how warm-starting allows defining workflows that exploit the hierarchical resources spread across the continuum. Then, we introduce a distributed inference engine with hybrid classical-quantum neural networks (QNNs) to aid system designers in accommodating applications with complex requirements that incur the highest degree of heterogeneity. We propose solutions focusing on classical layer partitioning and quantum circuit cutting to demonstrate the potential of utilizing classical and quantum computation across the continuum. To evaluate the importance and feasibility of our vision, we provide a proof of concept that exemplifies how extending a classical partition method to integrate quantum circuits can improve the solution quality. Specifically, we implement a split neural network with optional hybrid QNN predictors. Our results show that extending classical methods with QNNs is viable and promising for future work.\",\"PeriodicalId\":254476,\"journal\":{\"name\":\"2023 IEEE International Conference on Quantum Software (QSW)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Quantum Software (QSW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/QSW59989.2023.00021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Quantum Software (QSW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QSW59989.2023.00021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

量子处理单元(qpu)目前仅由云供应商提供。然而,随着最近的进步,托管qpu将很快无处不在。现有的工作还没有从边缘计算的研究中得出结论,以探索利用移动qpu的系统,或者混合应用程序如何从分布式异构资源中受益。因此,这项工作提出了边缘云连续体中的量子计算架构。我们讨论了扩展经典边缘计算现有工作以集成qpu的必要性、挑战和解决方案方法。我们描述了热启动如何允许定义利用分布在连续体上的分层资源的工作流。然后,我们引入了一个带有混合经典-量子神经网络(qnn)的分布式推理引擎,以帮助系统设计者适应具有复杂需求的应用程序,这些应用程序会产生最高程度的异构性。我们提出了专注于经典层划分和量子电路切割的解决方案,以展示跨连续体利用经典和量子计算的潜力。为了评估我们愿景的重要性和可行性,我们提供了一个概念证明,举例说明如何扩展经典划分方法来集成量子电路可以提高解的质量。具体来说,我们实现了一个带有可选混合QNN预测器的分裂神经网络。我们的结果表明,用qnn扩展经典方法是可行的,并且对未来的工作很有希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Architectural Vision for Quantum Computing in the Edge-Cloud Continuum
Quantum processing units (QPUs) are currently exclusively available from cloud vendors. However, with recent advancements, hosting QPUs will soon be possible everywhere. Existing work has yet to draw from research in edge computing to explore systems exploiting mobile QPUs, or how hybrid applications can benefit from distributed heterogeneous resources. Hence, this work presents an architecture for Quantum Computing in the edge-cloud continuum. We discuss the necessity, challenges, and solution approaches for extending existing work on classical edge computing to integrate QPUs. We describe how warm-starting allows defining workflows that exploit the hierarchical resources spread across the continuum. Then, we introduce a distributed inference engine with hybrid classical-quantum neural networks (QNNs) to aid system designers in accommodating applications with complex requirements that incur the highest degree of heterogeneity. We propose solutions focusing on classical layer partitioning and quantum circuit cutting to demonstrate the potential of utilizing classical and quantum computation across the continuum. To evaluate the importance and feasibility of our vision, we provide a proof of concept that exemplifies how extending a classical partition method to integrate quantum circuits can improve the solution quality. Specifically, we implement a split neural network with optional hybrid QNN predictors. Our results show that extending classical methods with QNNs is viable and promising for future work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信