基于人工神经网络的到达角估计

E. Efimov, T. Shevgunov, D. Filimonova
{"title":"基于人工神经网络的到达角估计","authors":"E. Efimov, T. Shevgunov, D. Filimonova","doi":"10.1109/IRS.2016.7497355","DOIUrl":null,"url":null,"abstract":"This paper presents the approach to the design of angle of arrival estimator for narrow-band noise-like signal based on artificial neural network (ANN). The multilayer perceptron type ANNs are trained to minimize the sum of squared errors or maximize the likelihood function using the deterministic approach with the data samples generated by the single station model. The special type of output neuron processing unit is developed to perform sensible angle estimation by the signals obtained from previous network level. The results of numerical simulation show the significant increase in the estimation procedure speed for trained ANN in comparison with direct maximum likelihood estimator. The cost of the performance boost is accuracy deterioration which is no more than 10 percent at moderate SNR values.","PeriodicalId":346680,"journal":{"name":"2016 17th International Radar Symposium (IRS)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Angle of arrival estimator based on artificial neural networks\",\"authors\":\"E. Efimov, T. Shevgunov, D. Filimonova\",\"doi\":\"10.1109/IRS.2016.7497355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the approach to the design of angle of arrival estimator for narrow-band noise-like signal based on artificial neural network (ANN). The multilayer perceptron type ANNs are trained to minimize the sum of squared errors or maximize the likelihood function using the deterministic approach with the data samples generated by the single station model. The special type of output neuron processing unit is developed to perform sensible angle estimation by the signals obtained from previous network level. The results of numerical simulation show the significant increase in the estimation procedure speed for trained ANN in comparison with direct maximum likelihood estimator. The cost of the performance boost is accuracy deterioration which is no more than 10 percent at moderate SNR values.\",\"PeriodicalId\":346680,\"journal\":{\"name\":\"2016 17th International Radar Symposium (IRS)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 17th International Radar Symposium (IRS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRS.2016.7497355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 17th International Radar Symposium (IRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRS.2016.7497355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

提出了一种基于人工神经网络的窄带类噪声信号到达角估计器的设计方法。多层感知器类型的人工神经网络使用确定性方法对单站模型生成的数据样本进行训练,以最小化误差的平方和或最大化似然函数。开发了一种特殊类型的输出神经元处理单元,通过从先前的网络层获得的信号进行感知角度估计。数值模拟结果表明,与直接极大似然估计相比,训练后的人工神经网络的估计过程速度显著提高。性能提升的代价是精度下降,在中等信噪比值下不超过10%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Angle of arrival estimator based on artificial neural networks
This paper presents the approach to the design of angle of arrival estimator for narrow-band noise-like signal based on artificial neural network (ANN). The multilayer perceptron type ANNs are trained to minimize the sum of squared errors or maximize the likelihood function using the deterministic approach with the data samples generated by the single station model. The special type of output neuron processing unit is developed to perform sensible angle estimation by the signals obtained from previous network level. The results of numerical simulation show the significant increase in the estimation procedure speed for trained ANN in comparison with direct maximum likelihood estimator. The cost of the performance boost is accuracy deterioration which is no more than 10 percent at moderate SNR values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信