比较基于数据缩放的递归最小二乘算法与卡尔曼滤波在纳米参数识别中的应用

Manuel Schimmack, Paolo Mercorelli, A. Georgiadis
{"title":"比较基于数据缩放的递归最小二乘算法与卡尔曼滤波在纳米参数识别中的应用","authors":"Manuel Schimmack, Paolo Mercorelli, A. Georgiadis","doi":"10.1109/ICMIC.2014.7020772","DOIUrl":null,"url":null,"abstract":"This paper considers a single-input and single-output (SISO) controlled autoregressive moving average system by using scalar factors of the input-output data. A general identification technique, through scaling data, is obtained. To obtain this data, Recursive Least Squares (RLS) methods are used to estimate the nano parameters of a linear model using input-output scaling factors. Different variations of the RLS method are tested and compared. The first RLS method uses a forgetting factor and the second method is integrated with a Kalman Filter covariance. In order to estimate the parameters in the nano range, the input signal requires a very high frequency and thus a very high sampling rate is required. Although using this proposed technique, a broader sampling rate and an input signal with low frequency can be used to identify the nano parameters characterizing the linear model. The simulation results indicate that the proposed algorithm is effective and robust. The main contribution of this work is to provide a scaled identification bandwidth and sampling rate of the detecting signal in the identification process.","PeriodicalId":405363,"journal":{"name":"Proceedings of 2014 International Conference on Modelling, Identification & Control","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Comparing data scaling based recursive least squares algorithms with Kalman Filter for nano parameters identification\",\"authors\":\"Manuel Schimmack, Paolo Mercorelli, A. Georgiadis\",\"doi\":\"10.1109/ICMIC.2014.7020772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers a single-input and single-output (SISO) controlled autoregressive moving average system by using scalar factors of the input-output data. A general identification technique, through scaling data, is obtained. To obtain this data, Recursive Least Squares (RLS) methods are used to estimate the nano parameters of a linear model using input-output scaling factors. Different variations of the RLS method are tested and compared. The first RLS method uses a forgetting factor and the second method is integrated with a Kalman Filter covariance. In order to estimate the parameters in the nano range, the input signal requires a very high frequency and thus a very high sampling rate is required. Although using this proposed technique, a broader sampling rate and an input signal with low frequency can be used to identify the nano parameters characterizing the linear model. The simulation results indicate that the proposed algorithm is effective and robust. The main contribution of this work is to provide a scaled identification bandwidth and sampling rate of the detecting signal in the identification process.\",\"PeriodicalId\":405363,\"journal\":{\"name\":\"Proceedings of 2014 International Conference on Modelling, Identification & Control\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 2014 International Conference on Modelling, Identification & Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMIC.2014.7020772\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 2014 International Conference on Modelling, Identification & Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMIC.2014.7020772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

利用输入输出数据的标量因子,研究了单输入单输出(SISO)控制的自回归移动平均系统。通过缩放数据,得到了一种通用的识别技术。为了获得这些数据,采用递归最小二乘(RLS)方法,利用输入-输出比例因子估计线性模型的纳米参数。对不同的RLS方法进行了测试和比较。第一种RLS方法采用遗忘因子,第二种方法采用卡尔曼滤波协方差。为了估计纳米范围内的参数,输入信号需要非常高的频率,因此需要非常高的采样率。尽管使用该技术,更宽的采样率和低频率的输入信号可以用来识别表征线性模型的纳米参数。仿真结果表明了该算法的有效性和鲁棒性。这项工作的主要贡献是在识别过程中提供了一个按比例的识别带宽和检测信号的采样率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparing data scaling based recursive least squares algorithms with Kalman Filter for nano parameters identification
This paper considers a single-input and single-output (SISO) controlled autoregressive moving average system by using scalar factors of the input-output data. A general identification technique, through scaling data, is obtained. To obtain this data, Recursive Least Squares (RLS) methods are used to estimate the nano parameters of a linear model using input-output scaling factors. Different variations of the RLS method are tested and compared. The first RLS method uses a forgetting factor and the second method is integrated with a Kalman Filter covariance. In order to estimate the parameters in the nano range, the input signal requires a very high frequency and thus a very high sampling rate is required. Although using this proposed technique, a broader sampling rate and an input signal with low frequency can be used to identify the nano parameters characterizing the linear model. The simulation results indicate that the proposed algorithm is effective and robust. The main contribution of this work is to provide a scaled identification bandwidth and sampling rate of the detecting signal in the identification process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信