基于深度神经网络的在线文本输入手势定位与分类

Shivraj Sharma, H. Pallab Jyoti Dutta, M. Bhuyan, R. Laskar
{"title":"基于深度神经网络的在线文本输入手势定位与分类","authors":"Shivraj Sharma, H. Pallab Jyoti Dutta, M. Bhuyan, R. Laskar","doi":"10.1109/ASPCON49795.2020.9276713","DOIUrl":null,"url":null,"abstract":"Hand gesture recognition is an important aspect of human-computer interaction. A proper hand gesture recognizing system can be used to build a robust text entry system for human-computer interface. This work proposes a real-time hand localization and recognition system. For hand localization, YOLOv3 is used that predicts a bounding box around the hand, and for hand gestures classification, a pretrained VGG16 network is employed. The bounding box regression technique helped localize the ROI (region of interest) and reduced the complexity, that aided in the classification task. The experimental results show that the proposed method is capable of recognizing the gestures with high testing accuracy on three benchmark datasets, namely, ASL (American sign language), Libras and NUS (National University of Singapore) datasets.","PeriodicalId":193814,"journal":{"name":"2020 IEEE Applied Signal Processing Conference (ASPCON)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Hand Gesture Localization and Classification by Deep Neural Network for Online Text Entry\",\"authors\":\"Shivraj Sharma, H. Pallab Jyoti Dutta, M. Bhuyan, R. Laskar\",\"doi\":\"10.1109/ASPCON49795.2020.9276713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hand gesture recognition is an important aspect of human-computer interaction. A proper hand gesture recognizing system can be used to build a robust text entry system for human-computer interface. This work proposes a real-time hand localization and recognition system. For hand localization, YOLOv3 is used that predicts a bounding box around the hand, and for hand gestures classification, a pretrained VGG16 network is employed. The bounding box regression technique helped localize the ROI (region of interest) and reduced the complexity, that aided in the classification task. The experimental results show that the proposed method is capable of recognizing the gestures with high testing accuracy on three benchmark datasets, namely, ASL (American sign language), Libras and NUS (National University of Singapore) datasets.\",\"PeriodicalId\":193814,\"journal\":{\"name\":\"2020 IEEE Applied Signal Processing Conference (ASPCON)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Applied Signal Processing Conference (ASPCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASPCON49795.2020.9276713\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Applied Signal Processing Conference (ASPCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASPCON49795.2020.9276713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

手势识别是人机交互的一个重要方面。一个合适的手势识别系统可以用来构建一个健壮的人机界面文本输入系统。本文提出了一种实时手部定位识别系统。对于手部定位,使用YOLOv3预测手部周围的边界框,对于手势分类,使用预训练的VGG16网络。边界盒回归技术有助于定位感兴趣区域并降低复杂性,从而有助于分类任务。实验结果表明,该方法在美国手语(ASL)、天秤座(Libras)和新加坡国立大学(NUS)三个基准数据集上都能识别出具有较高测试精度的手势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hand Gesture Localization and Classification by Deep Neural Network for Online Text Entry
Hand gesture recognition is an important aspect of human-computer interaction. A proper hand gesture recognizing system can be used to build a robust text entry system for human-computer interface. This work proposes a real-time hand localization and recognition system. For hand localization, YOLOv3 is used that predicts a bounding box around the hand, and for hand gestures classification, a pretrained VGG16 network is employed. The bounding box regression technique helped localize the ROI (region of interest) and reduced the complexity, that aided in the classification task. The experimental results show that the proposed method is capable of recognizing the gestures with high testing accuracy on three benchmark datasets, namely, ASL (American sign language), Libras and NUS (National University of Singapore) datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信