锗沟道无结纳米线晶体管的低温特性

C. Sun, R. Liang, Lei Xiao, Libin Liu, Jun Xu, Jing Wang
{"title":"锗沟道无结纳米线晶体管的低温特性","authors":"C. Sun, R. Liang, Lei Xiao, Libin Liu, Jun Xu, Jing Wang","doi":"10.1109/EDTM.2018.8421519","DOIUrl":null,"url":null,"abstract":"We fabricated high performance Ge channel junctionless nanowire transistors (JNTs) and demonstrated their cryogenic characteristics from 90 to 270 K. The results show that the leakage current is more sensitive to temperature than drive current. The slope of threshold voltage shift with temperature is estimated to be 2.5 mV/K. Low field mobility decreases with reduced temperature and is found to be limited by both Coulomb scattering and neutral defects scattering.","PeriodicalId":418495,"journal":{"name":"2018 IEEE 2nd Electron Devices Technology and Manufacturing Conference (EDTM)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Cryogenic Characteristics of Ge channel Junctionless Nanowire Transistors\",\"authors\":\"C. Sun, R. Liang, Lei Xiao, Libin Liu, Jun Xu, Jing Wang\",\"doi\":\"10.1109/EDTM.2018.8421519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We fabricated high performance Ge channel junctionless nanowire transistors (JNTs) and demonstrated their cryogenic characteristics from 90 to 270 K. The results show that the leakage current is more sensitive to temperature than drive current. The slope of threshold voltage shift with temperature is estimated to be 2.5 mV/K. Low field mobility decreases with reduced temperature and is found to be limited by both Coulomb scattering and neutral defects scattering.\",\"PeriodicalId\":418495,\"journal\":{\"name\":\"2018 IEEE 2nd Electron Devices Technology and Manufacturing Conference (EDTM)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 2nd Electron Devices Technology and Manufacturing Conference (EDTM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EDTM.2018.8421519\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 2nd Electron Devices Technology and Manufacturing Conference (EDTM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDTM.2018.8421519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

制备了高性能的锗沟道无结纳米线晶体管(JNTs),并对其在90 ~ 270 K范围内的低温特性进行了验证。结果表明,泄漏电流比驱动电流对温度更敏感。阈值电压随温度变化的斜率估计为2.5 mV/K。低场迁移率随温度降低而降低,并受到库仑散射和中性缺陷散射的限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cryogenic Characteristics of Ge channel Junctionless Nanowire Transistors
We fabricated high performance Ge channel junctionless nanowire transistors (JNTs) and demonstrated their cryogenic characteristics from 90 to 270 K. The results show that the leakage current is more sensitive to temperature than drive current. The slope of threshold voltage shift with temperature is estimated to be 2.5 mV/K. Low field mobility decreases with reduced temperature and is found to be limited by both Coulomb scattering and neutral defects scattering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信