协同过滤推荐系统误差界的研究

U. Han, G. Yang, J. Yoo, Y. Chung, Hee-Choon Lee
{"title":"协同过滤推荐系统误差界的研究","authors":"U. Han, G. Yang, J. Yoo, Y. Chung, Hee-Choon Lee","doi":"10.1109/MUE.2008.72","DOIUrl":null,"url":null,"abstract":"We predict accuracy of user's preferences by using memory-based collaborative filtering algorithm in recommender system, and then analyze the results through the EDA approach. The possibilities are presented that prediction accuracy can be evaluated before prediction process by analyzing the results. The classification functions using the generative probability of specific ratings are made, and users are classified by using the classification functions. The prediction accuracies of each classified group are analyzed through statistical tests. The method of setting the Error Bound of users who have high probabilities in low prediction accuracy will be presented.","PeriodicalId":203066,"journal":{"name":"2008 International Conference on Multimedia and Ubiquitous Engineering (mue 2008)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Proposal on the Error Bound of Collaborative Filtering Recommender System\",\"authors\":\"U. Han, G. Yang, J. Yoo, Y. Chung, Hee-Choon Lee\",\"doi\":\"10.1109/MUE.2008.72\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We predict accuracy of user's preferences by using memory-based collaborative filtering algorithm in recommender system, and then analyze the results through the EDA approach. The possibilities are presented that prediction accuracy can be evaluated before prediction process by analyzing the results. The classification functions using the generative probability of specific ratings are made, and users are classified by using the classification functions. The prediction accuracies of each classified group are analyzed through statistical tests. The method of setting the Error Bound of users who have high probabilities in low prediction accuracy will be presented.\",\"PeriodicalId\":203066,\"journal\":{\"name\":\"2008 International Conference on Multimedia and Ubiquitous Engineering (mue 2008)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 International Conference on Multimedia and Ubiquitous Engineering (mue 2008)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MUE.2008.72\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Conference on Multimedia and Ubiquitous Engineering (mue 2008)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MUE.2008.72","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在推荐系统中使用基于记忆的协同过滤算法预测用户偏好的准确性,然后通过EDA方法对结果进行分析。通过对预报结果的分析,提出了在预报前对预报精度进行评价的可能性。利用具体评分的生成概率构造分类函数,并利用分类函数对用户进行分类。通过统计检验对各分类组的预测精度进行了分析。提出了在预测精度较低的情况下,对概率较高的用户设置误差界的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Proposal on the Error Bound of Collaborative Filtering Recommender System
We predict accuracy of user's preferences by using memory-based collaborative filtering algorithm in recommender system, and then analyze the results through the EDA approach. The possibilities are presented that prediction accuracy can be evaluated before prediction process by analyzing the results. The classification functions using the generative probability of specific ratings are made, and users are classified by using the classification functions. The prediction accuracies of each classified group are analyzed through statistical tests. The method of setting the Error Bound of users who have high probabilities in low prediction accuracy will be presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信