具有参数和任意初始值的非线性方程的牛顿迭代法

Guojie Liu
{"title":"具有参数和任意初始值的非线性方程的牛顿迭代法","authors":"Guojie Liu","doi":"10.1109/ICMSSE53595.2021.00018","DOIUrl":null,"url":null,"abstract":"Improved methord for nonlinear equations based on newton iteration. If some parameters is involved in the equations, and parameters can be changed In each calculation, that will get much flexibility for practice. For this purpose, Parameters existing in all the process of caculation and can be assigned value in any process is needed. And calculation methor is also improved in this article. for making the user can input any initial values to get convergent and accurate result.","PeriodicalId":331570,"journal":{"name":"2021 International Conference on Management Science and Software Engineering (ICMSSE)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Newton Iteration Method for Nonlinear Equations with Parameters and Arbitrary Original Value\",\"authors\":\"Guojie Liu\",\"doi\":\"10.1109/ICMSSE53595.2021.00018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Improved methord for nonlinear equations based on newton iteration. If some parameters is involved in the equations, and parameters can be changed In each calculation, that will get much flexibility for practice. For this purpose, Parameters existing in all the process of caculation and can be assigned value in any process is needed. And calculation methor is also improved in this article. for making the user can input any initial values to get convergent and accurate result.\",\"PeriodicalId\":331570,\"journal\":{\"name\":\"2021 International Conference on Management Science and Software Engineering (ICMSSE)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Management Science and Software Engineering (ICMSSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMSSE53595.2021.00018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Management Science and Software Engineering (ICMSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMSSE53595.2021.00018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于牛顿迭代的非线性方程组的改进求解方法。如果在方程中加入一些参数,并且每次计算参数都可以改变,这将为实践提供很大的灵活性。为此,需要在计算的所有过程中都存在且在任何过程中都可以赋值的参数。并对计算方法进行了改进。为了使用户可以输入任意初始值,从而得到收敛准确的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Newton Iteration Method for Nonlinear Equations with Parameters and Arbitrary Original Value
Improved methord for nonlinear equations based on newton iteration. If some parameters is involved in the equations, and parameters can be changed In each calculation, that will get much flexibility for practice. For this purpose, Parameters existing in all the process of caculation and can be assigned value in any process is needed. And calculation methor is also improved in this article. for making the user can input any initial values to get convergent and accurate result.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信