模拟瑞利阻尼对实时有限元模型稳定性的影响

S. Marlatt, S. Payandeh
{"title":"模拟瑞利阻尼对实时有限元模型稳定性的影响","authors":"S. Marlatt, S. Payandeh","doi":"10.1109/WHC.2005.93","DOIUrl":null,"url":null,"abstract":"The relationship between Rayleigh damping and the critical integration step size of linear explicit finite element models using centered difference integration is explored. From experimental results, an analytical formula is derived that extends the Courant condition to include Rayleigh damping, allowing real-time computation of stable time-step sizes for viscously damped finite element models for haptic simulations.","PeriodicalId":117050,"journal":{"name":"First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. World Haptics Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Modeling the effect of Rayleigh damping on the stability of real-time finite element models\",\"authors\":\"S. Marlatt, S. Payandeh\",\"doi\":\"10.1109/WHC.2005.93\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The relationship between Rayleigh damping and the critical integration step size of linear explicit finite element models using centered difference integration is explored. From experimental results, an analytical formula is derived that extends the Courant condition to include Rayleigh damping, allowing real-time computation of stable time-step sizes for viscously damped finite element models for haptic simulations.\",\"PeriodicalId\":117050,\"journal\":{\"name\":\"First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. World Haptics Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. World Haptics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WHC.2005.93\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. World Haptics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHC.2005.93","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

利用中心差分积分法研究了线性显式有限元模型的瑞利阻尼与临界积分步长之间的关系。根据实验结果,导出了一个解析公式,将Courant条件扩展到包括瑞利阻尼,从而可以实时计算用于触觉仿真的粘性阻尼有限元模型的稳定时间步长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling the effect of Rayleigh damping on the stability of real-time finite element models
The relationship between Rayleigh damping and the critical integration step size of linear explicit finite element models using centered difference integration is explored. From experimental results, an analytical formula is derived that extends the Courant condition to include Rayleigh damping, allowing real-time computation of stable time-step sizes for viscously damped finite element models for haptic simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信