多窄带信号的自适应时变频谱分析

A. Fineberg, R. Mammone
{"title":"多窄带信号的自适应时变频谱分析","authors":"A. Fineberg, R. Mammone","doi":"10.1109/SPECT.1990.205591","DOIUrl":null,"url":null,"abstract":"An adaptive technique to compute the Fourier coefficients of a time-varying spectrum is presented. The algorithm performs a least squares decomposition of the signal onto a nonharmonic Fourier basis. The algorithm updates the spectral estimate on a sample by sample basis in the time domain. This technique produces a signal decomposition with very good localization in both time and frequency domains. The detection of tones spaced closer than expected by the uncertainty principle (super-resolution) is shown by computer simulation. Computational complexity issues of the new method are also discussed.<<ETX>>","PeriodicalId":117661,"journal":{"name":"Fifth ASSP Workshop on Spectrum Estimation and Modeling","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Adaptive time-varying spectral analysis for multiple narrowband signals\",\"authors\":\"A. Fineberg, R. Mammone\",\"doi\":\"10.1109/SPECT.1990.205591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An adaptive technique to compute the Fourier coefficients of a time-varying spectrum is presented. The algorithm performs a least squares decomposition of the signal onto a nonharmonic Fourier basis. The algorithm updates the spectral estimate on a sample by sample basis in the time domain. This technique produces a signal decomposition with very good localization in both time and frequency domains. The detection of tones spaced closer than expected by the uncertainty principle (super-resolution) is shown by computer simulation. Computational complexity issues of the new method are also discussed.<<ETX>>\",\"PeriodicalId\":117661,\"journal\":{\"name\":\"Fifth ASSP Workshop on Spectrum Estimation and Modeling\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fifth ASSP Workshop on Spectrum Estimation and Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPECT.1990.205591\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifth ASSP Workshop on Spectrum Estimation and Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPECT.1990.205591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种计算时变频谱傅立叶系数的自适应方法。该算法将信号进行最小二乘分解到非谐波傅立叶基上。该算法在时域上逐样本更新频谱估计。该技术产生的信号分解在时域和频域都具有很好的局部化。计算机模拟结果表明,利用不确定原理(超分辨率)可以检测到间隔比预期更近的音调。本文还讨论了新方法的计算复杂度问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive time-varying spectral analysis for multiple narrowband signals
An adaptive technique to compute the Fourier coefficients of a time-varying spectrum is presented. The algorithm performs a least squares decomposition of the signal onto a nonharmonic Fourier basis. The algorithm updates the spectral estimate on a sample by sample basis in the time domain. This technique produces a signal decomposition with very good localization in both time and frequency domains. The detection of tones spaced closer than expected by the uncertainty principle (super-resolution) is shown by computer simulation. Computational complexity issues of the new method are also discussed.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信