基于模型的实验方法评估集体系统设计

Ambrosio Valencia-Romero, P. Grogan
{"title":"基于模型的实验方法评估集体系统设计","authors":"Ambrosio Valencia-Romero, P. Grogan","doi":"10.1115/DETC2018-85786","DOIUrl":null,"url":null,"abstract":"This work presents a conceptual model of collective decision-making processes in engineering systems design to understand the tradeoffs, risks, and dynamics between autonomous but interacting design actors. The proposed approach combines value-driven design, game theory, and simulation experimentation to study how technical and social factors of a design decision-making process facilitate or inhibit collective action. The collective systems design model considers two levels of decision-making: 1) lower-level design value exploration; and 2) upper-level design strategy selection. At the first level, the actors concurrently explore two strategy-specific value spaces with coupled design decision variables. Each collective decision is mapped to an individual scalar measure of preference (design value) that each actor seeks to maximize. At the second level, each of the actor’s design values from the two lower-level design exploration tasks is assigned to one diagonal entry of a normalform game, with off-diagonal elements calculated in function of the “sucker’s” and “temptation-to-defect” payoffs in a classical strategy game scenario. The model helps generate synthetic design problems with specific strategy dynamics between autonomous actors. Results from a preliminary multi-agent simulation study assess the validity of proposed design spaces and generate hypotheses for subsequent studies using human subjects.","PeriodicalId":375011,"journal":{"name":"Volume 7: 30th International Conference on Design Theory and Methodology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Toward a Model-Based Experimental Approach to Assessing Collective Systems Design\",\"authors\":\"Ambrosio Valencia-Romero, P. Grogan\",\"doi\":\"10.1115/DETC2018-85786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents a conceptual model of collective decision-making processes in engineering systems design to understand the tradeoffs, risks, and dynamics between autonomous but interacting design actors. The proposed approach combines value-driven design, game theory, and simulation experimentation to study how technical and social factors of a design decision-making process facilitate or inhibit collective action. The collective systems design model considers two levels of decision-making: 1) lower-level design value exploration; and 2) upper-level design strategy selection. At the first level, the actors concurrently explore two strategy-specific value spaces with coupled design decision variables. Each collective decision is mapped to an individual scalar measure of preference (design value) that each actor seeks to maximize. At the second level, each of the actor’s design values from the two lower-level design exploration tasks is assigned to one diagonal entry of a normalform game, with off-diagonal elements calculated in function of the “sucker’s” and “temptation-to-defect” payoffs in a classical strategy game scenario. The model helps generate synthetic design problems with specific strategy dynamics between autonomous actors. Results from a preliminary multi-agent simulation study assess the validity of proposed design spaces and generate hypotheses for subsequent studies using human subjects.\",\"PeriodicalId\":375011,\"journal\":{\"name\":\"Volume 7: 30th International Conference on Design Theory and Methodology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 7: 30th International Conference on Design Theory and Methodology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/DETC2018-85786\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 7: 30th International Conference on Design Theory and Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/DETC2018-85786","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

这项工作提出了工程系统设计中集体决策过程的概念模型,以理解自主但相互作用的设计参与者之间的权衡、风险和动态。提出的方法结合了价值驱动设计、博弈论和模拟实验来研究设计决策过程中的技术和社会因素如何促进或抑制集体行动。集体系统设计模型考虑了两个层次的决策:1)较低层次的设计价值探索;2)上层设计策略选择。在第一层,参与者同时探索两个具有耦合设计决策变量的特定于策略的价值空间。每个集体决策都映射到每个参与者寻求最大化的偏好(设计值)的单个标量度量。在第二级,来自两个低级设计探索任务的每个参与者的设计值被分配到一个标准游戏的对角线入口,非对角线元素根据经典战略游戏场景中的“吸盘”和“引诱背叛”收益计算。该模型有助于生成具有自主行为体之间特定策略动态的综合设计问题。初步的多智能体模拟研究的结果评估了所提出的设计空间的有效性,并为后续使用人类受试者的研究产生了假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Toward a Model-Based Experimental Approach to Assessing Collective Systems Design
This work presents a conceptual model of collective decision-making processes in engineering systems design to understand the tradeoffs, risks, and dynamics between autonomous but interacting design actors. The proposed approach combines value-driven design, game theory, and simulation experimentation to study how technical and social factors of a design decision-making process facilitate or inhibit collective action. The collective systems design model considers two levels of decision-making: 1) lower-level design value exploration; and 2) upper-level design strategy selection. At the first level, the actors concurrently explore two strategy-specific value spaces with coupled design decision variables. Each collective decision is mapped to an individual scalar measure of preference (design value) that each actor seeks to maximize. At the second level, each of the actor’s design values from the two lower-level design exploration tasks is assigned to one diagonal entry of a normalform game, with off-diagonal elements calculated in function of the “sucker’s” and “temptation-to-defect” payoffs in a classical strategy game scenario. The model helps generate synthetic design problems with specific strategy dynamics between autonomous actors. Results from a preliminary multi-agent simulation study assess the validity of proposed design spaces and generate hypotheses for subsequent studies using human subjects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信