基于多模态模型强化学习的破碎岩石开挖

Yifan Zhu, Liyang Wang, Liangjun Zhang
{"title":"基于多模态模型强化学习的破碎岩石开挖","authors":"Yifan Zhu, Liyang Wang, Liangjun Zhang","doi":"10.1109/IROS47612.2022.9981537","DOIUrl":null,"url":null,"abstract":"This paper presents a multi-modal model-based reinforcement learning (MBRL) approach to the excavation of fragmented rocks, which are very challenging to model due to their highly variable sizes and geometries, and visual occlusions. A multi-modal recurrent neural network (RNN) learns the dynamics of bucket-terrain interaction from a small physical dataset, with a discrete set of motion primitives encoded with domain knowledge as the action space. Then a model predictive controller (MPC) tracks a global reference path using multi-modal feedback. We show that our RNN-based dynamics function achieves lower prediction errors compared to a feed-forward neural network baseline, and the MPC is able to significantly outperform manually designed strategies on such a challenging task.","PeriodicalId":431373,"journal":{"name":"2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Excavation of Fragmented Rocks with Multi-modal Model-based Reinforcement Learning\",\"authors\":\"Yifan Zhu, Liyang Wang, Liangjun Zhang\",\"doi\":\"10.1109/IROS47612.2022.9981537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a multi-modal model-based reinforcement learning (MBRL) approach to the excavation of fragmented rocks, which are very challenging to model due to their highly variable sizes and geometries, and visual occlusions. A multi-modal recurrent neural network (RNN) learns the dynamics of bucket-terrain interaction from a small physical dataset, with a discrete set of motion primitives encoded with domain knowledge as the action space. Then a model predictive controller (MPC) tracks a global reference path using multi-modal feedback. We show that our RNN-based dynamics function achieves lower prediction errors compared to a feed-forward neural network baseline, and the MPC is able to significantly outperform manually designed strategies on such a challenging task.\",\"PeriodicalId\":431373,\"journal\":{\"name\":\"2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS47612.2022.9981537\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS47612.2022.9981537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种基于多模态模型的强化学习(MBRL)方法,用于破碎岩石的挖掘,这是非常具有挑战性的建模,因为它们的高度变化的大小和几何形状,以及视觉遮挡。多模态递归神经网络(RNN)从一个小的物理数据集中学习桶-地形相互作用的动力学,用一组离散的运动原语作为动作空间,这些原语用领域知识编码。然后,模型预测控制器(MPC)利用多模态反馈跟踪全局参考路径。我们表明,与前馈神经网络基线相比,我们基于rnn的动态函数实现了更低的预测误差,并且MPC能够在这样一个具有挑战性的任务上显着优于手动设计的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Excavation of Fragmented Rocks with Multi-modal Model-based Reinforcement Learning
This paper presents a multi-modal model-based reinforcement learning (MBRL) approach to the excavation of fragmented rocks, which are very challenging to model due to their highly variable sizes and geometries, and visual occlusions. A multi-modal recurrent neural network (RNN) learns the dynamics of bucket-terrain interaction from a small physical dataset, with a discrete set of motion primitives encoded with domain knowledge as the action space. Then a model predictive controller (MPC) tracks a global reference path using multi-modal feedback. We show that our RNN-based dynamics function achieves lower prediction errors compared to a feed-forward neural network baseline, and the MPC is able to significantly outperform manually designed strategies on such a challenging task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信