{"title":"Saluja-Karpovsky压实机在多未知数响应测试中的应用","authors":"J. Patel, S. Lumetta, S. Reddy","doi":"10.1109/VTEST.2003.1197640","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of compacting test responses in the presence of unknowns at the input of the compactor by exploiting the capabilities of well-known error detection and correction codes. The technique, called i-Compact, uses Saluja-Karpovsky Space Compactors, but permits detection and location of errors in the presence of unknown logic (X) values with help from the ATE. The advantages of i-Compact are: 1. Small number of output pins front the compactors for a required error detection capability; 2. Small tester memory for storing expected responses; 3. Flexibility of choosing several different combinations of number of X values and number of bit errors for error detection without altering the hardware compactor; 4. Same hardware capable of identifying the line that produced an error in presence of unknowns; 5. Use of non-proprietary codes found in the literature of 1950s; and 6. Independent of the circuit and the test generator.","PeriodicalId":292996,"journal":{"name":"Proceedings. 21st VLSI Test Symposium, 2003.","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"111","resultStr":"{\"title\":\"Application of Saluja-Karpovsky compactors to test responses with many unknowns\",\"authors\":\"J. Patel, S. Lumetta, S. Reddy\",\"doi\":\"10.1109/VTEST.2003.1197640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the problem of compacting test responses in the presence of unknowns at the input of the compactor by exploiting the capabilities of well-known error detection and correction codes. The technique, called i-Compact, uses Saluja-Karpovsky Space Compactors, but permits detection and location of errors in the presence of unknown logic (X) values with help from the ATE. The advantages of i-Compact are: 1. Small number of output pins front the compactors for a required error detection capability; 2. Small tester memory for storing expected responses; 3. Flexibility of choosing several different combinations of number of X values and number of bit errors for error detection without altering the hardware compactor; 4. Same hardware capable of identifying the line that produced an error in presence of unknowns; 5. Use of non-proprietary codes found in the literature of 1950s; and 6. Independent of the circuit and the test generator.\",\"PeriodicalId\":292996,\"journal\":{\"name\":\"Proceedings. 21st VLSI Test Symposium, 2003.\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"111\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 21st VLSI Test Symposium, 2003.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VTEST.2003.1197640\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 21st VLSI Test Symposium, 2003.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTEST.2003.1197640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Application of Saluja-Karpovsky compactors to test responses with many unknowns
This paper addresses the problem of compacting test responses in the presence of unknowns at the input of the compactor by exploiting the capabilities of well-known error detection and correction codes. The technique, called i-Compact, uses Saluja-Karpovsky Space Compactors, but permits detection and location of errors in the presence of unknown logic (X) values with help from the ATE. The advantages of i-Compact are: 1. Small number of output pins front the compactors for a required error detection capability; 2. Small tester memory for storing expected responses; 3. Flexibility of choosing several different combinations of number of X values and number of bit errors for error detection without altering the hardware compactor; 4. Same hardware capable of identifying the line that produced an error in presence of unknowns; 5. Use of non-proprietary codes found in the literature of 1950s; and 6. Independent of the circuit and the test generator.