H. Nambu, K. Kanetani, Y. Idei, T. Masuda, K. Higeta, M. Ohayashi, M. Usami, K. Yamaguchi, T. Kikuchi, T. Ikeda, K. Ohhata, T. Kusunoki, N. Homma
{"title":"用于1mb Sram的0.65ns, 72kb Ecl-cmos Ram宏","authors":"H. Nambu, K. Kanetani, Y. Idei, T. Masuda, K. Higeta, M. Ohayashi, M. Usami, K. Yamaguchi, T. Kikuchi, T. Ikeda, K. Ohhata, T. Kusunoki, N. Homma","doi":"10.1109/VLSIC.1994.586240","DOIUrl":null,"url":null,"abstract":"An ultrahigh-speed 72-kb ECL-CMOS RAM macro for a 1-Mb SRAM with 0.65-ns address-access time, 0.80-ns write-pulse width, and 30.24-μm 2 memory cells has been developed using 0.3-μm BiCMOS technology. Two key techniques for achieving ultrahigh speed are an ECL decoder/driver circuit with a BiCMOS inverter and a write-pulse generator with a replica memory cell. These circuit techniques can reduce access time and write-pulse width of the 72-kb RAM macro to 71 % and 58 % of those of RAM macros with conventional circuits. In order to reduce crosstalk noise for CMOS memory-cell arrays driven at extremely high speeds, a twisted bit-line structure with a normally on MOS equalizer is proposed. These techniques are especially useful for realizing ultrahigh-speed, high-density SRAM's, witch have been used as cache and control storages in mainframe computers","PeriodicalId":350730,"journal":{"name":"Proceedings of 1994 IEEE Symposium on VLSI Circuits","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A 0.65ns, 72kb Ecl-cmos Ram Macro For A 1mb Sram\",\"authors\":\"H. Nambu, K. Kanetani, Y. Idei, T. Masuda, K. Higeta, M. Ohayashi, M. Usami, K. Yamaguchi, T. Kikuchi, T. Ikeda, K. Ohhata, T. Kusunoki, N. Homma\",\"doi\":\"10.1109/VLSIC.1994.586240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An ultrahigh-speed 72-kb ECL-CMOS RAM macro for a 1-Mb SRAM with 0.65-ns address-access time, 0.80-ns write-pulse width, and 30.24-μm 2 memory cells has been developed using 0.3-μm BiCMOS technology. Two key techniques for achieving ultrahigh speed are an ECL decoder/driver circuit with a BiCMOS inverter and a write-pulse generator with a replica memory cell. These circuit techniques can reduce access time and write-pulse width of the 72-kb RAM macro to 71 % and 58 % of those of RAM macros with conventional circuits. In order to reduce crosstalk noise for CMOS memory-cell arrays driven at extremely high speeds, a twisted bit-line structure with a normally on MOS equalizer is proposed. These techniques are especially useful for realizing ultrahigh-speed, high-density SRAM's, witch have been used as cache and control storages in mainframe computers\",\"PeriodicalId\":350730,\"journal\":{\"name\":\"Proceedings of 1994 IEEE Symposium on VLSI Circuits\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1994 IEEE Symposium on VLSI Circuits\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSIC.1994.586240\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE Symposium on VLSI Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIC.1994.586240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An ultrahigh-speed 72-kb ECL-CMOS RAM macro for a 1-Mb SRAM with 0.65-ns address-access time, 0.80-ns write-pulse width, and 30.24-μm 2 memory cells has been developed using 0.3-μm BiCMOS technology. Two key techniques for achieving ultrahigh speed are an ECL decoder/driver circuit with a BiCMOS inverter and a write-pulse generator with a replica memory cell. These circuit techniques can reduce access time and write-pulse width of the 72-kb RAM macro to 71 % and 58 % of those of RAM macros with conventional circuits. In order to reduce crosstalk noise for CMOS memory-cell arrays driven at extremely high speeds, a twisted bit-line structure with a normally on MOS equalizer is proposed. These techniques are especially useful for realizing ultrahigh-speed, high-density SRAM's, witch have been used as cache and control storages in mainframe computers