状态历史树:用于超大间隔数据的基于磁盘的增量数据结构

A. Montplaisir-Goncalves, Naser Ezzati-Jivan, Florian Wininger, M. Dagenais
{"title":"状态历史树:用于超大间隔数据的基于磁盘的增量数据结构","authors":"A. Montplaisir-Goncalves, Naser Ezzati-Jivan, Florian Wininger, M. Dagenais","doi":"10.1109/SocialCom.2013.107","DOIUrl":null,"url":null,"abstract":"In this paper, we propose the State History Tree, a disk-based data structure to manage large streaming interval data. The State History Tree provides an efficient way to store interval data on permanent storage with a logarithmic access time. The disk-based structure ensures that extremely large data sets can be accommodated. The State History Tree stores intervals in blocks on disk in a tree organization. Unlike other interval management data structures like R-Trees, our solution avoids re-balancing the nodes, speeding up the tree construction. The proposed method is implemented in Java, and evaluated using large data sets (up to one terabyte). Those data sets were obtained from the state intervals computed from system events traced with the LTTng kernel tracer. The evaluation results demonstrate the performance and efficiency of the method, as compared with other solutions to managing huge interval data sets.","PeriodicalId":129308,"journal":{"name":"2013 International Conference on Social Computing","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"State History Tree: An Incremental Disk-Based Data Structure for Very Large Interval Data\",\"authors\":\"A. Montplaisir-Goncalves, Naser Ezzati-Jivan, Florian Wininger, M. Dagenais\",\"doi\":\"10.1109/SocialCom.2013.107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose the State History Tree, a disk-based data structure to manage large streaming interval data. The State History Tree provides an efficient way to store interval data on permanent storage with a logarithmic access time. The disk-based structure ensures that extremely large data sets can be accommodated. The State History Tree stores intervals in blocks on disk in a tree organization. Unlike other interval management data structures like R-Trees, our solution avoids re-balancing the nodes, speeding up the tree construction. The proposed method is implemented in Java, and evaluated using large data sets (up to one terabyte). Those data sets were obtained from the state intervals computed from system events traced with the LTTng kernel tracer. The evaluation results demonstrate the performance and efficiency of the method, as compared with other solutions to managing huge interval data sets.\",\"PeriodicalId\":129308,\"journal\":{\"name\":\"2013 International Conference on Social Computing\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Social Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SocialCom.2013.107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Social Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SocialCom.2013.107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

在本文中,我们提出了状态历史树,一种基于磁盘的数据结构来管理大的流间隔数据。状态历史树提供了一种将间隔数据存储在具有对数访问时间的永久存储器上的有效方法。基于磁盘的结构确保可以容纳非常大的数据集。状态历史树将时间间隔以块的形式存储在磁盘上。与其他区间管理数据结构(如R-Trees)不同,我们的解决方案避免了重新平衡节点,从而加快了树的构建。所建议的方法是用Java实现的,并使用大型数据集(高达1tb)进行评估。这些数据集是从ltng内核跟踪器跟踪的系统事件计算的状态间隔中获得的。评价结果证明了该方法的性能和效率,与其他解决方案相比,管理巨大的区间数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
State History Tree: An Incremental Disk-Based Data Structure for Very Large Interval Data
In this paper, we propose the State History Tree, a disk-based data structure to manage large streaming interval data. The State History Tree provides an efficient way to store interval data on permanent storage with a logarithmic access time. The disk-based structure ensures that extremely large data sets can be accommodated. The State History Tree stores intervals in blocks on disk in a tree organization. Unlike other interval management data structures like R-Trees, our solution avoids re-balancing the nodes, speeding up the tree construction. The proposed method is implemented in Java, and evaluated using large data sets (up to one terabyte). Those data sets were obtained from the state intervals computed from system events traced with the LTTng kernel tracer. The evaluation results demonstrate the performance and efficiency of the method, as compared with other solutions to managing huge interval data sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信