霍克斯点过程的加速极大似然估计

Ce Guo, W. Luk
{"title":"霍克斯点过程的加速极大似然估计","authors":"Ce Guo, W. Luk","doi":"10.1109/FPL.2013.6645502","DOIUrl":null,"url":null,"abstract":"Hawkes processes are point processes that can be used to build probabilistic models to describe and predict occurrence patterns of random events. They are widely used in high-frequency trading, seismic analysis and neuroscience. A critical numerical calculation in Hawkes process models is parameter estimation, which is used to fit a Hawkes process model to a data set. The parameter estimation problem can be solved by searching for a parameter set that maximises the log-likelihood. A core operation of this search process, the log-likelihood evaluation, is computationally demanding if the number of data points is large. To accelerate the computation, we present a log-likelihood evaluation strategy which is suitable for hardware acceleration. We then design and optimise a pipelined engine based on our proposed strategy. In the experiments, an FPGA-based implementation of the proposed engine is shown to be up to 72 times faster than a single-core CPU, and 10 times faster than an 8-core CPU.","PeriodicalId":200435,"journal":{"name":"2013 23rd International Conference on Field programmable Logic and Applications","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Accelerating maximum likelihood estimation for Hawkes point processes\",\"authors\":\"Ce Guo, W. Luk\",\"doi\":\"10.1109/FPL.2013.6645502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hawkes processes are point processes that can be used to build probabilistic models to describe and predict occurrence patterns of random events. They are widely used in high-frequency trading, seismic analysis and neuroscience. A critical numerical calculation in Hawkes process models is parameter estimation, which is used to fit a Hawkes process model to a data set. The parameter estimation problem can be solved by searching for a parameter set that maximises the log-likelihood. A core operation of this search process, the log-likelihood evaluation, is computationally demanding if the number of data points is large. To accelerate the computation, we present a log-likelihood evaluation strategy which is suitable for hardware acceleration. We then design and optimise a pipelined engine based on our proposed strategy. In the experiments, an FPGA-based implementation of the proposed engine is shown to be up to 72 times faster than a single-core CPU, and 10 times faster than an 8-core CPU.\",\"PeriodicalId\":200435,\"journal\":{\"name\":\"2013 23rd International Conference on Field programmable Logic and Applications\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 23rd International Conference on Field programmable Logic and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FPL.2013.6645502\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 23rd International Conference on Field programmable Logic and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPL.2013.6645502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

霍克斯过程是点过程,可以用来建立概率模型来描述和预测随机事件的发生模式。它们被广泛应用于高频交易、地震分析和神经科学。Hawkes过程模型中一个关键的数值计算是参数估计,它用于将Hawkes过程模型拟合到数据集上。参数估计问题可以通过搜索使对数似然最大化的参数集来解决。如果数据点的数量很大,这个搜索过程的核心操作,即对数似然评估,在计算上要求很高。为了加快计算速度,我们提出了一种适合硬件加速的对数似然评估策略。然后,基于我们提出的策略,我们设计并优化了一个流水线引擎。在实验中,基于fpga的引擎实现比单核CPU快72倍,比8核CPU快10倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accelerating maximum likelihood estimation for Hawkes point processes
Hawkes processes are point processes that can be used to build probabilistic models to describe and predict occurrence patterns of random events. They are widely used in high-frequency trading, seismic analysis and neuroscience. A critical numerical calculation in Hawkes process models is parameter estimation, which is used to fit a Hawkes process model to a data set. The parameter estimation problem can be solved by searching for a parameter set that maximises the log-likelihood. A core operation of this search process, the log-likelihood evaluation, is computationally demanding if the number of data points is large. To accelerate the computation, we present a log-likelihood evaluation strategy which is suitable for hardware acceleration. We then design and optimise a pipelined engine based on our proposed strategy. In the experiments, an FPGA-based implementation of the proposed engine is shown to be up to 72 times faster than a single-core CPU, and 10 times faster than an 8-core CPU.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信