基于小波基和约束优化算法的稀疏化信号瞬态特征提取

Wei Fan, G. Cai, Weiguo Huang, Zhongkui Zhu
{"title":"基于小波基和约束优化算法的稀疏化信号瞬态特征提取","authors":"Wei Fan, G. Cai, Weiguo Huang, Zhongkui Zhu","doi":"10.1109/ChinaSIP.2014.6889351","DOIUrl":null,"url":null,"abstract":"Ill-posed linear inverse problems (ILIP), such as restoration and reconstruction, are core topics of transient feature extraction in cyclostationary signal processing. A standard formulation for solving these problems consists of a constrained optimization problem with a regularization function minimized. In this paper, a method combining sparse representation and special wavelet basis is proposed to handle one class of constrained problems tailored to transient feature extraction applications. Simulation study concerning cyclic transients signal shows the effectiveness of this method. Application in transient feature extraction of fault gearbox vibration signal shows that the proposed method can extract the transient feature effectively.","PeriodicalId":248977,"journal":{"name":"2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sparsity-enabled signal transient feature extraction using wavelet basis and constrained optimization algorithm\",\"authors\":\"Wei Fan, G. Cai, Weiguo Huang, Zhongkui Zhu\",\"doi\":\"10.1109/ChinaSIP.2014.6889351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ill-posed linear inverse problems (ILIP), such as restoration and reconstruction, are core topics of transient feature extraction in cyclostationary signal processing. A standard formulation for solving these problems consists of a constrained optimization problem with a regularization function minimized. In this paper, a method combining sparse representation and special wavelet basis is proposed to handle one class of constrained problems tailored to transient feature extraction applications. Simulation study concerning cyclic transients signal shows the effectiveness of this method. Application in transient feature extraction of fault gearbox vibration signal shows that the proposed method can extract the transient feature effectively.\",\"PeriodicalId\":248977,\"journal\":{\"name\":\"2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ChinaSIP.2014.6889351\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ChinaSIP.2014.6889351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

不适定线性逆问题(ILIP)是环平稳信号处理中瞬态特征提取的核心问题,如恢复和重构。解决这些问题的标准公式包括一个正则化函数最小化的约束优化问题。本文提出了一种结合稀疏表示和特殊小波基的方法来处理一类适合于瞬态特征提取应用的约束问题。对循环暂态信号的仿真研究表明了该方法的有效性。在故障齿轮箱振动信号暂态特征提取中的应用表明,该方法能有效提取故障齿轮箱振动信号的暂态特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sparsity-enabled signal transient feature extraction using wavelet basis and constrained optimization algorithm
Ill-posed linear inverse problems (ILIP), such as restoration and reconstruction, are core topics of transient feature extraction in cyclostationary signal processing. A standard formulation for solving these problems consists of a constrained optimization problem with a regularization function minimized. In this paper, a method combining sparse representation and special wavelet basis is proposed to handle one class of constrained problems tailored to transient feature extraction applications. Simulation study concerning cyclic transients signal shows the effectiveness of this method. Application in transient feature extraction of fault gearbox vibration signal shows that the proposed method can extract the transient feature effectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信