双门控扭控双单层石墨烯- hbn异质结构中的栅极可调谐共振隧道

K. Lin, N. Prasad, G. William Burg, Kenji Watanabe, T. Taniguchi, E. Tutuc
{"title":"双门控扭控双单层石墨烯- hbn异质结构中的栅极可调谐共振隧道","authors":"K. Lin, N. Prasad, G. William Burg, Kenji Watanabe, T. Taniguchi, E. Tutuc","doi":"10.1109/DRC55272.2022.9855786","DOIUrl":null,"url":null,"abstract":"Van der Waals heterostructures of two-dimensional (2D) crystals are a versatile platform for electron physics and device applications. An emerging device that departs markedly from the field-effect transistor, and has shown potential applications for logic [1], memory [2], and security [3] is the interlayer resonant tunneling field-effect transistor (ITFET), consisting of two independently contacted 2D layers separated by a tunnel barrier. In such devices, energy and momentum conservation during tunneling leads to interlayer voltage-current characteristics with gate-tunable negative differential resistance (NDR). ITFET demonstrations include single-gated double monolayer or double bilayer graphene separated by hexagonal boron-nitride (hBN) [4]–[5], dual-gated double bilayer graphene separated by WSe2 [6], and dual-gated double WSe2 separated by hBN barriers [7]. Here, we present a combined experimental and modeling study of dual-gated double monolayer graphene-hBN heterostructures, where the crystals axes of the two graphene electrodes are rotationally aligned, thereby enabling resonant tunneling and gate-tunable NDR.","PeriodicalId":200504,"journal":{"name":"2022 Device Research Conference (DRC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gate-Tunable Resonant Tunneling in a Dual-Gated Twist-Controlled Double Monolayer Graphene-hBN Heterostructure\",\"authors\":\"K. Lin, N. Prasad, G. William Burg, Kenji Watanabe, T. Taniguchi, E. Tutuc\",\"doi\":\"10.1109/DRC55272.2022.9855786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Van der Waals heterostructures of two-dimensional (2D) crystals are a versatile platform for electron physics and device applications. An emerging device that departs markedly from the field-effect transistor, and has shown potential applications for logic [1], memory [2], and security [3] is the interlayer resonant tunneling field-effect transistor (ITFET), consisting of two independently contacted 2D layers separated by a tunnel barrier. In such devices, energy and momentum conservation during tunneling leads to interlayer voltage-current characteristics with gate-tunable negative differential resistance (NDR). ITFET demonstrations include single-gated double monolayer or double bilayer graphene separated by hexagonal boron-nitride (hBN) [4]–[5], dual-gated double bilayer graphene separated by WSe2 [6], and dual-gated double WSe2 separated by hBN barriers [7]. Here, we present a combined experimental and modeling study of dual-gated double monolayer graphene-hBN heterostructures, where the crystals axes of the two graphene electrodes are rotationally aligned, thereby enabling resonant tunneling and gate-tunable NDR.\",\"PeriodicalId\":200504,\"journal\":{\"name\":\"2022 Device Research Conference (DRC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Device Research Conference (DRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DRC55272.2022.9855786\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Device Research Conference (DRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC55272.2022.9855786","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

二维(2D)晶体的范德华异质结构是电子物理和器件应用的通用平台。层间共振隧道场效应晶体管(ITFET)是一种与场效应晶体管明显不同的新兴器件,它在逻辑[1]、存储[2]和安全[3]方面显示出潜在的应用前景,它由两个由隧道势垒隔开的独立接触的二维层组成。在这种器件中,隧穿过程中的能量和动量守恒导致层间电压电流特性具有门可调谐的负差分电阻(NDR)。ITFET的演示包括由六方氮化硼(hBN)分隔的单门双单层或双双层石墨烯[4]-[5],由WSe2分隔的双门双双层石墨烯[6],以及由hBN势垒分隔的双门双WSe2[7]。在这里,我们提出了双门控双单层石墨烯- hbn异质结构的联合实验和模型研究,其中两个石墨烯电极的晶体轴是旋转排列的,从而实现了共振隧道和栅极可调谐的NDR。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gate-Tunable Resonant Tunneling in a Dual-Gated Twist-Controlled Double Monolayer Graphene-hBN Heterostructure
Van der Waals heterostructures of two-dimensional (2D) crystals are a versatile platform for electron physics and device applications. An emerging device that departs markedly from the field-effect transistor, and has shown potential applications for logic [1], memory [2], and security [3] is the interlayer resonant tunneling field-effect transistor (ITFET), consisting of two independently contacted 2D layers separated by a tunnel barrier. In such devices, energy and momentum conservation during tunneling leads to interlayer voltage-current characteristics with gate-tunable negative differential resistance (NDR). ITFET demonstrations include single-gated double monolayer or double bilayer graphene separated by hexagonal boron-nitride (hBN) [4]–[5], dual-gated double bilayer graphene separated by WSe2 [6], and dual-gated double WSe2 separated by hBN barriers [7]. Here, we present a combined experimental and modeling study of dual-gated double monolayer graphene-hBN heterostructures, where the crystals axes of the two graphene electrodes are rotationally aligned, thereby enabling resonant tunneling and gate-tunable NDR.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信