基于顺序蒙特卡罗算法的多目标跟踪与数据关联研究

Fan Lin-bo, K. Li, Wu Ying-cheng, Zhao Ming
{"title":"基于顺序蒙特卡罗算法的多目标跟踪与数据关联研究","authors":"Fan Lin-bo, K. Li, Wu Ying-cheng, Zhao Ming","doi":"10.1109/FBIE.2008.73","DOIUrl":null,"url":null,"abstract":"A new method based on sequential Monte Carlo algorithm is proposed for tracking multi-target and data association in non-linear system. The algorithm partitions the problem of multi-target tracking into two problems: single target tracking and data association. Single target tracking is implemented by using UKF and data association by using sequential Monte Carlo algorithm. Since Particle Filter has advantages in non-linear non-Gauss system, the proposed method performs well in the experiment.","PeriodicalId":415908,"journal":{"name":"2008 International Seminar on Future BioMedical Information Engineering","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Study of Multi-target Tracking and Data Association Based on Sequential Monte Carlo Algorithm\",\"authors\":\"Fan Lin-bo, K. Li, Wu Ying-cheng, Zhao Ming\",\"doi\":\"10.1109/FBIE.2008.73\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new method based on sequential Monte Carlo algorithm is proposed for tracking multi-target and data association in non-linear system. The algorithm partitions the problem of multi-target tracking into two problems: single target tracking and data association. Single target tracking is implemented by using UKF and data association by using sequential Monte Carlo algorithm. Since Particle Filter has advantages in non-linear non-Gauss system, the proposed method performs well in the experiment.\",\"PeriodicalId\":415908,\"journal\":{\"name\":\"2008 International Seminar on Future BioMedical Information Engineering\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 International Seminar on Future BioMedical Information Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FBIE.2008.73\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Seminar on Future BioMedical Information Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FBIE.2008.73","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种基于时序蒙特卡罗算法的非线性系统多目标跟踪和数据关联的新方法。该算法将多目标跟踪问题划分为单目标跟踪和数据关联两个问题。采用UKF实现单目标跟踪,采用时序蒙特卡罗算法实现数据关联。由于粒子滤波在非线性非高斯系统中具有优势,该方法在实验中取得了良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study of Multi-target Tracking and Data Association Based on Sequential Monte Carlo Algorithm
A new method based on sequential Monte Carlo algorithm is proposed for tracking multi-target and data association in non-linear system. The algorithm partitions the problem of multi-target tracking into two problems: single target tracking and data association. Single target tracking is implemented by using UKF and data association by using sequential Monte Carlo algorithm. Since Particle Filter has advantages in non-linear non-Gauss system, the proposed method performs well in the experiment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信