{"title":"下一代基于“1553B”应用的全双工交换以太网","authors":"A. Mifdaoui, F. Frances, C. Fraboul","doi":"10.1109/RTAS.2007.13","DOIUrl":null,"url":null,"abstract":"Over the last thirty years, the MIL-STD 1553B data bus has been used in many embedded systems, like aircrafts, ships, missiles and satellites. However, the increasing number and complexity of interconnected subsystems lead to emerging needs for more communication bandwidth. Therefore, a new interconnection system is needed to overcome the limitations of the MIL-STD 1553B data bus. Among several high speed networks, full duplex switched Ethernet is put forward here as an attractive candidate to replace the MIL-STD 1553B data bus. However, the key argument against switched Ethernet lies in its non-deterministic behavior that makes it inadequate to deliver hard time-constrained communications. Hence, our primary objective in this paper is to achieve an accepted QoS level offered by switched Ethernet, to support diverse \"1553B\"-based applications requirements. We evaluate the performance of traffic shaping techniques on full duplex switched Ethernet with an adequate choice of service strategy in the switch, to guarantee the real-time constraints required by these specific 1553B-based applications. An analytic study is conducted, using the network calculus formalism, to evaluate the deterministic guarantees offered by our approach. Theoretical analysis are then investigated in the case of a realistic \"1553B\"-based application extracted from a real military aircraft network. The results herein show the ability of profiled full duplex switched Ethernet to satisfy 1553B-like real-time constraints","PeriodicalId":222543,"journal":{"name":"13th IEEE Real Time and Embedded Technology and Applications Symposium (RTAS'07)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"Full Duplex Switched Ethernet for Next Generation \\\"1553B\\\"-Based Applications\",\"authors\":\"A. Mifdaoui, F. Frances, C. Fraboul\",\"doi\":\"10.1109/RTAS.2007.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over the last thirty years, the MIL-STD 1553B data bus has been used in many embedded systems, like aircrafts, ships, missiles and satellites. However, the increasing number and complexity of interconnected subsystems lead to emerging needs for more communication bandwidth. Therefore, a new interconnection system is needed to overcome the limitations of the MIL-STD 1553B data bus. Among several high speed networks, full duplex switched Ethernet is put forward here as an attractive candidate to replace the MIL-STD 1553B data bus. However, the key argument against switched Ethernet lies in its non-deterministic behavior that makes it inadequate to deliver hard time-constrained communications. Hence, our primary objective in this paper is to achieve an accepted QoS level offered by switched Ethernet, to support diverse \\\"1553B\\\"-based applications requirements. We evaluate the performance of traffic shaping techniques on full duplex switched Ethernet with an adequate choice of service strategy in the switch, to guarantee the real-time constraints required by these specific 1553B-based applications. An analytic study is conducted, using the network calculus formalism, to evaluate the deterministic guarantees offered by our approach. Theoretical analysis are then investigated in the case of a realistic \\\"1553B\\\"-based application extracted from a real military aircraft network. The results herein show the ability of profiled full duplex switched Ethernet to satisfy 1553B-like real-time constraints\",\"PeriodicalId\":222543,\"journal\":{\"name\":\"13th IEEE Real Time and Embedded Technology and Applications Symposium (RTAS'07)\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"13th IEEE Real Time and Embedded Technology and Applications Symposium (RTAS'07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RTAS.2007.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"13th IEEE Real Time and Embedded Technology and Applications Symposium (RTAS'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTAS.2007.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Full Duplex Switched Ethernet for Next Generation "1553B"-Based Applications
Over the last thirty years, the MIL-STD 1553B data bus has been used in many embedded systems, like aircrafts, ships, missiles and satellites. However, the increasing number and complexity of interconnected subsystems lead to emerging needs for more communication bandwidth. Therefore, a new interconnection system is needed to overcome the limitations of the MIL-STD 1553B data bus. Among several high speed networks, full duplex switched Ethernet is put forward here as an attractive candidate to replace the MIL-STD 1553B data bus. However, the key argument against switched Ethernet lies in its non-deterministic behavior that makes it inadequate to deliver hard time-constrained communications. Hence, our primary objective in this paper is to achieve an accepted QoS level offered by switched Ethernet, to support diverse "1553B"-based applications requirements. We evaluate the performance of traffic shaping techniques on full duplex switched Ethernet with an adequate choice of service strategy in the switch, to guarantee the real-time constraints required by these specific 1553B-based applications. An analytic study is conducted, using the network calculus formalism, to evaluate the deterministic guarantees offered by our approach. Theoretical analysis are then investigated in the case of a realistic "1553B"-based application extracted from a real military aircraft network. The results herein show the ability of profiled full duplex switched Ethernet to satisfy 1553B-like real-time constraints