非凹优化中风险值与期望差值的等价性

A. Chen, M. Stadje, Fangyuan Zhang
{"title":"非凹优化中风险值与期望差值的等价性","authors":"A. Chen, M. Stadje, Fangyuan Zhang","doi":"10.2139/ssrn.3533948","DOIUrl":null,"url":null,"abstract":"This paper studies an optimal asset allocation problem for a surplus-driven financial institution facing a Value-at-Risk (VaR) or an Expected Shortfall (ES) constraint corresponding to a non-concave optimization problem under constraints. We obtain the closed-form optimal wealth with the ES constraint as well as with the VaR constraint respectively, and explicitly calculate the optimal trading strategy for constant relative risk aversion (CRRA) utility functions. We find that both VaR and ES-based regulation can effectively reduce the probability of default for a surplus-driven financial institution. However, the liability holders' benefits cannot be fully protected under either VaR- or ES-based regulation. In addition, we show that the VaR and ES-based regulation can induce the same optimal portfolio choice for a surplus-driven financial institution. This differs from the conclusion drawn in Basak and Shapiro 2001 where the financial institution aims at maximizing the expected utility of the total assets, and ES provides better loss protection.","PeriodicalId":222637,"journal":{"name":"University of Southern California Center for Law & Social Science (CLASS) Research Paper Series","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On the Equivalence Between Value-at-Risk and Expected Shortfall in Non-Concave Optimization\",\"authors\":\"A. Chen, M. Stadje, Fangyuan Zhang\",\"doi\":\"10.2139/ssrn.3533948\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies an optimal asset allocation problem for a surplus-driven financial institution facing a Value-at-Risk (VaR) or an Expected Shortfall (ES) constraint corresponding to a non-concave optimization problem under constraints. We obtain the closed-form optimal wealth with the ES constraint as well as with the VaR constraint respectively, and explicitly calculate the optimal trading strategy for constant relative risk aversion (CRRA) utility functions. We find that both VaR and ES-based regulation can effectively reduce the probability of default for a surplus-driven financial institution. However, the liability holders' benefits cannot be fully protected under either VaR- or ES-based regulation. In addition, we show that the VaR and ES-based regulation can induce the same optimal portfolio choice for a surplus-driven financial institution. This differs from the conclusion drawn in Basak and Shapiro 2001 where the financial institution aims at maximizing the expected utility of the total assets, and ES provides better loss protection.\",\"PeriodicalId\":222637,\"journal\":{\"name\":\"University of Southern California Center for Law & Social Science (CLASS) Research Paper Series\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"University of Southern California Center for Law & Social Science (CLASS) Research Paper Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3533948\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"University of Southern California Center for Law & Social Science (CLASS) Research Paper Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3533948","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了盈余驱动的金融机构面临风险价值(VaR)约束或预期缺口(ES)约束时的最优资产配置问题,该约束对应于约束下的非凹优化问题。分别在ES约束和VaR约束下得到了封闭式最优财富,并明确计算了恒定相对风险厌恶(CRRA)效用函数下的最优交易策略。我们发现,对于一个盈余驱动的金融机构来说,基于VaR和es的监管都能有效地降低违约概率。然而,无论是基于风险价值还是基于风险回报系统的监管,责任持有人的利益都不能得到充分保护。此外,我们还表明,对于盈余驱动的金融机构,基于VaR和基于es的监管可以诱导相同的最优投资组合选择。这与2001年Basak和Shapiro得出的结论不同,后者认为金融机构的目标是使总资产的预期效用最大化,而ES提供了更好的损失保护。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Equivalence Between Value-at-Risk and Expected Shortfall in Non-Concave Optimization
This paper studies an optimal asset allocation problem for a surplus-driven financial institution facing a Value-at-Risk (VaR) or an Expected Shortfall (ES) constraint corresponding to a non-concave optimization problem under constraints. We obtain the closed-form optimal wealth with the ES constraint as well as with the VaR constraint respectively, and explicitly calculate the optimal trading strategy for constant relative risk aversion (CRRA) utility functions. We find that both VaR and ES-based regulation can effectively reduce the probability of default for a surplus-driven financial institution. However, the liability holders' benefits cannot be fully protected under either VaR- or ES-based regulation. In addition, we show that the VaR and ES-based regulation can induce the same optimal portfolio choice for a surplus-driven financial institution. This differs from the conclusion drawn in Basak and Shapiro 2001 where the financial institution aims at maximizing the expected utility of the total assets, and ES provides better loss protection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信