RDF4Led

Anh Le-Tuan, Conor Hayes, Marcin Wylot, Danh Le-Phuoc
{"title":"RDF4Led","authors":"Anh Le-Tuan, Conor Hayes, Marcin Wylot, Danh Le-Phuoc","doi":"10.1145/3277593.3277600","DOIUrl":null,"url":null,"abstract":"Semantic interoperability for the Internet of Things(IoT) is being enabled by standards and technologies from the Semantic Web. As recent research suggests a move towards decentralised IoT architectures, our focus is on how to enable scalable and robust RDF engines that can be embedded throughout the architecture, in particular at edge nodes. RDF processing at edge enables the creation of semantic integration gateways for locally connected low-level devices. We introduce a lightweight RDF engine, which comprises of RDF storage and SPARQL processor, for the lightweight edge devices, called RDF4Led. RDF4Led follows the RISCstyle (Reduce Instruction Set Computer) design philosophy. The design comprises a flash-aware storage structure, an indexing scheme and a low-memory-footprint join algorithm which improves scalability as well as robustness over competing solutions. With a significantly smaller memory footprint, we show that RDF4Led can handle 2 to 5 times more data than RDF engines such as Jena TDB and Virtuoso. On three types of ARM boards, RDF4Led requires 10--30% memory of its competitors to operate up to 30 million triples dataset; it can perform faster updates and can scale better than Jena TDB and Virtuoso. Furthermore, we demonstrate considerably faster query operations than Jena TDB.","PeriodicalId":129822,"journal":{"name":"Proceedings of the 8th International Conference on the Internet of Things","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"RDF4Led\",\"authors\":\"Anh Le-Tuan, Conor Hayes, Marcin Wylot, Danh Le-Phuoc\",\"doi\":\"10.1145/3277593.3277600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semantic interoperability for the Internet of Things(IoT) is being enabled by standards and technologies from the Semantic Web. As recent research suggests a move towards decentralised IoT architectures, our focus is on how to enable scalable and robust RDF engines that can be embedded throughout the architecture, in particular at edge nodes. RDF processing at edge enables the creation of semantic integration gateways for locally connected low-level devices. We introduce a lightweight RDF engine, which comprises of RDF storage and SPARQL processor, for the lightweight edge devices, called RDF4Led. RDF4Led follows the RISCstyle (Reduce Instruction Set Computer) design philosophy. The design comprises a flash-aware storage structure, an indexing scheme and a low-memory-footprint join algorithm which improves scalability as well as robustness over competing solutions. With a significantly smaller memory footprint, we show that RDF4Led can handle 2 to 5 times more data than RDF engines such as Jena TDB and Virtuoso. On three types of ARM boards, RDF4Led requires 10--30% memory of its competitors to operate up to 30 million triples dataset; it can perform faster updates and can scale better than Jena TDB and Virtuoso. Furthermore, we demonstrate considerably faster query operations than Jena TDB.\",\"PeriodicalId\":129822,\"journal\":{\"name\":\"Proceedings of the 8th International Conference on the Internet of Things\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 8th International Conference on the Internet of Things\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3277593.3277600\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th International Conference on the Internet of Things","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3277593.3277600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
RDF4Led
Semantic interoperability for the Internet of Things(IoT) is being enabled by standards and technologies from the Semantic Web. As recent research suggests a move towards decentralised IoT architectures, our focus is on how to enable scalable and robust RDF engines that can be embedded throughout the architecture, in particular at edge nodes. RDF processing at edge enables the creation of semantic integration gateways for locally connected low-level devices. We introduce a lightweight RDF engine, which comprises of RDF storage and SPARQL processor, for the lightweight edge devices, called RDF4Led. RDF4Led follows the RISCstyle (Reduce Instruction Set Computer) design philosophy. The design comprises a flash-aware storage structure, an indexing scheme and a low-memory-footprint join algorithm which improves scalability as well as robustness over competing solutions. With a significantly smaller memory footprint, we show that RDF4Led can handle 2 to 5 times more data than RDF engines such as Jena TDB and Virtuoso. On three types of ARM boards, RDF4Led requires 10--30% memory of its competitors to operate up to 30 million triples dataset; it can perform faster updates and can scale better than Jena TDB and Virtuoso. Furthermore, we demonstrate considerably faster query operations than Jena TDB.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信