基于张量局部线性判别分析的面部表情识别

Zhan Wang, Q. Ruan, Gaoyun An
{"title":"基于张量局部线性判别分析的面部表情识别","authors":"Zhan Wang, Q. Ruan, Gaoyun An","doi":"10.1109/ICOSP.2012.6491797","DOIUrl":null,"url":null,"abstract":"Linear discriminant analysis (LDA) is an effective method for solving the classification problems. Many based-discriminant analysis approaches have been proposed to extract more discriminant information and try to overcome the limitation of LDA. Local linear discriminant analysis (LLDA) was proposed to capture the local structure of samples, it can overcome the assumption of Gaussian distribution which emerge in traditional LDA. In this paper, we proposed tensor version of LLDA, tensorLLDA not only can avoid the undersampled problem which appear in LDA and LLDA, but also reduce the computation complexity. Experiment on JAFFE facial expression database and Cohn-Kanade facial expression database show the effectiveness of tensorLLDA.","PeriodicalId":143331,"journal":{"name":"2012 IEEE 11th International Conference on Signal Processing","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Facial expression recognition based on tensor local linear discriminant analysis\",\"authors\":\"Zhan Wang, Q. Ruan, Gaoyun An\",\"doi\":\"10.1109/ICOSP.2012.6491797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Linear discriminant analysis (LDA) is an effective method for solving the classification problems. Many based-discriminant analysis approaches have been proposed to extract more discriminant information and try to overcome the limitation of LDA. Local linear discriminant analysis (LLDA) was proposed to capture the local structure of samples, it can overcome the assumption of Gaussian distribution which emerge in traditional LDA. In this paper, we proposed tensor version of LLDA, tensorLLDA not only can avoid the undersampled problem which appear in LDA and LLDA, but also reduce the computation complexity. Experiment on JAFFE facial expression database and Cohn-Kanade facial expression database show the effectiveness of tensorLLDA.\",\"PeriodicalId\":143331,\"journal\":{\"name\":\"2012 IEEE 11th International Conference on Signal Processing\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 11th International Conference on Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOSP.2012.6491797\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 11th International Conference on Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSP.2012.6491797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

线性判别分析(LDA)是解决分类问题的有效方法。人们提出了许多基于判别分析的方法来提取更多的判别信息,并试图克服LDA的局限性。提出了局部线性判别分析(LLDA)来捕捉样本的局部结构,克服了传统LDA中出现的高斯分布假设。在本文中,我们提出了张量版本的LLDA, tensorLLDA不仅可以避免LDA和LLDA中出现的欠采样问题,而且可以降低计算复杂度。在JAFFE面部表情数据库和Cohn-Kanade面部表情数据库上的实验表明了tensorLLDA的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Facial expression recognition based on tensor local linear discriminant analysis
Linear discriminant analysis (LDA) is an effective method for solving the classification problems. Many based-discriminant analysis approaches have been proposed to extract more discriminant information and try to overcome the limitation of LDA. Local linear discriminant analysis (LLDA) was proposed to capture the local structure of samples, it can overcome the assumption of Gaussian distribution which emerge in traditional LDA. In this paper, we proposed tensor version of LLDA, tensorLLDA not only can avoid the undersampled problem which appear in LDA and LLDA, but also reduce the computation complexity. Experiment on JAFFE facial expression database and Cohn-Kanade facial expression database show the effectiveness of tensorLLDA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信