利用静态无功补偿器缓解拉贾斯坦邦西部大型风力发电的无功需求

A. Pathak, M. Sharma
{"title":"利用静态无功补偿器缓解拉贾斯坦邦西部大型风力发电的无功需求","authors":"A. Pathak, M. Sharma","doi":"10.1109/IICPE.2014.7115737","DOIUrl":null,"url":null,"abstract":"Shunt capacitor banks are installed by developers pooling stations for management of reactive power for a wind farm. Operation of shunt capacitor banks is manually and accordingly there is a wide variation in wind power plant power factor of 0.9 lagging to 0.9 leading. Due to large variations in wind generation power factor, reactive power flows on transmission lines are also variable and accordingly there is a wide variation in power transmission system voltage from minimum 0.8 p.u. to a maximum of 1.20 p.u. Due to low & high power system voltages, transmission lines are tripped resulting constrained in a wind power evacuation. Considering the high penetration of wind power in the system, in this paper, Static Var Compensator (SVC) is proposed at 400kV GSS Jaisalmerfor large scale wind power penetrated power system, for mitigation of wind power generators reactive power. Simulation studies have been carried out to validate the effectiveness of the SVC for voltage control with the variation in wind power generation power factor. Case studies are carried out in 19-bus system in Western Rajasthan area where wind power penetration is even more than 2000MW to demonstrate the performance of the SVC taking the consolidated effect of voltage behavior with and without SVC at a different power factor. Wind power, penetrated part of Rajasthan power system has been modeled using Mi.-Power system analysis software. Results of tests conducted on the model system in various possible field conditions are presented and discussed.","PeriodicalId":206767,"journal":{"name":"2014 IEEE 6th India International Conference on Power Electronics (IICPE)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Mitigation of reactive power requirements of large scale wind power generation in Western Rajasthan using Static Var Compensator\",\"authors\":\"A. Pathak, M. Sharma\",\"doi\":\"10.1109/IICPE.2014.7115737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Shunt capacitor banks are installed by developers pooling stations for management of reactive power for a wind farm. Operation of shunt capacitor banks is manually and accordingly there is a wide variation in wind power plant power factor of 0.9 lagging to 0.9 leading. Due to large variations in wind generation power factor, reactive power flows on transmission lines are also variable and accordingly there is a wide variation in power transmission system voltage from minimum 0.8 p.u. to a maximum of 1.20 p.u. Due to low & high power system voltages, transmission lines are tripped resulting constrained in a wind power evacuation. Considering the high penetration of wind power in the system, in this paper, Static Var Compensator (SVC) is proposed at 400kV GSS Jaisalmerfor large scale wind power penetrated power system, for mitigation of wind power generators reactive power. Simulation studies have been carried out to validate the effectiveness of the SVC for voltage control with the variation in wind power generation power factor. Case studies are carried out in 19-bus system in Western Rajasthan area where wind power penetration is even more than 2000MW to demonstrate the performance of the SVC taking the consolidated effect of voltage behavior with and without SVC at a different power factor. Wind power, penetrated part of Rajasthan power system has been modeled using Mi.-Power system analysis software. Results of tests conducted on the model system in various possible field conditions are presented and discussed.\",\"PeriodicalId\":206767,\"journal\":{\"name\":\"2014 IEEE 6th India International Conference on Power Electronics (IICPE)\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 6th India International Conference on Power Electronics (IICPE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IICPE.2014.7115737\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 6th India International Conference on Power Electronics (IICPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IICPE.2014.7115737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

并联电容器组由开发商安装,用于管理风电场的无功功率。并联电容器组的操作是手动的,因此风力发电厂的功率因数在0.9滞后到0.9领先之间变化很大。由于风力发电功率因数的巨大变化,输电线路上的无功功率流也是可变的,因此输电系统电压从最小的0.8 p.u.到最大的1.20 p.u.变化很大。由于电力系统电压的高低,输电线路会跳闸,导致风电疏散受到限制。考虑到风电在系统中的高穿透性,本文提出了在400kV GSS jaisalmera大型风电穿透电力系统的静态无功补偿器(SVC),以缓解风电机组的无功。通过仿真研究,验证了随着风力发电功率因数的变化,SVC对电压控制的有效性。在风力发电渗透率甚至超过2000MW的拉贾斯坦邦西部地区的19母线系统中进行了案例研究,以展示SVC在不同功率因数下的性能,以及有无SVC的电压行为的综合效应。利用mi - power系统分析软件对拉贾斯坦邦部分电力系统中的风力发电进行了建模。对模型系统在各种可能的现场条件下进行的试验结果进行了介绍和讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mitigation of reactive power requirements of large scale wind power generation in Western Rajasthan using Static Var Compensator
Shunt capacitor banks are installed by developers pooling stations for management of reactive power for a wind farm. Operation of shunt capacitor banks is manually and accordingly there is a wide variation in wind power plant power factor of 0.9 lagging to 0.9 leading. Due to large variations in wind generation power factor, reactive power flows on transmission lines are also variable and accordingly there is a wide variation in power transmission system voltage from minimum 0.8 p.u. to a maximum of 1.20 p.u. Due to low & high power system voltages, transmission lines are tripped resulting constrained in a wind power evacuation. Considering the high penetration of wind power in the system, in this paper, Static Var Compensator (SVC) is proposed at 400kV GSS Jaisalmerfor large scale wind power penetrated power system, for mitigation of wind power generators reactive power. Simulation studies have been carried out to validate the effectiveness of the SVC for voltage control with the variation in wind power generation power factor. Case studies are carried out in 19-bus system in Western Rajasthan area where wind power penetration is even more than 2000MW to demonstrate the performance of the SVC taking the consolidated effect of voltage behavior with and without SVC at a different power factor. Wind power, penetrated part of Rajasthan power system has been modeled using Mi.-Power system analysis software. Results of tests conducted on the model system in various possible field conditions are presented and discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信