复合材料刹车片工作偏转形状的数值模拟

M. Ravanbod
{"title":"复合材料刹车片工作偏转形状的数值模拟","authors":"M. Ravanbod","doi":"10.46720/7143269eb2021-stp-008","DOIUrl":null,"url":null,"abstract":"This project outlines the effect of changing Young’s modulus, Poisson’s ratios and shear modulus on the pad natural frequencies. It aims to improve the understanding of the influence of friction material properties on the pad natural frequencies, to observe how the natural frequencies can change, with the changes in the properties of the composite brake pad friction material. In addition, two different brake pad models (Pad-A and Pad-B) were designed, using CATIA V5 software to study whether different pad aspect ratios can affect the influence of friction material properties on the natural frequencies. This study utilizes the free-free analysis on the brake pads, to investigate the natural frequencies, and the mode shapes of the first four modes, using ABAQUS software. Also, an experimental test (Tap testing) on Pad-A was carried out to verify the accuracy of the numerical analysis. The research has demonstrated that the maximum variation between the numerical and the experimental results is 5.1%, which is acceptable. Thus, the numerical analysis provided reasonable results.Furthermore, the factorial analysis was applied on the obtained natural frequencies for each pad, to find out the material properties that have the main effect on the natural frequencies, and the relationship between each property and the natural frequency, using MINITAB software. The results indicated that increasing Young’s modulus in the horizontal plane can increase the values of natural frequencies, while a decrease in Young’s modulus in the vertical plane, Poisson’s ratios, and shear modulus in all planes can increase the values of the natural frequencies. Therefore, the research deduced that Young’s modulus, and Poisson’s ratios in the horizontal plane must be taken into account, when choosing a suitable orthotropic friction material for brake pads. This relationship between the friction material properties and the natural frequency is independent of pad aspect ratios, and can be concluded for all types of pads. The natural frequency plays a significant role in triggering brake squeal. Brake squeal can occur if the pad natural frequency is coupled with the disc frequency. Therefore, determining how altering friction material properties affects the pad natural frequency, can help to propose an appropriate friction material for the pad, in order to have the pad natural frequency, which is not close to the disc frequency in the frequency range, where the brake noise occurs.","PeriodicalId":315146,"journal":{"name":"EuroBrake 2021 Technical Programme","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Modelling of Composite Brake Pad Operational Deflection Shapes\",\"authors\":\"M. Ravanbod\",\"doi\":\"10.46720/7143269eb2021-stp-008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This project outlines the effect of changing Young’s modulus, Poisson’s ratios and shear modulus on the pad natural frequencies. It aims to improve the understanding of the influence of friction material properties on the pad natural frequencies, to observe how the natural frequencies can change, with the changes in the properties of the composite brake pad friction material. In addition, two different brake pad models (Pad-A and Pad-B) were designed, using CATIA V5 software to study whether different pad aspect ratios can affect the influence of friction material properties on the natural frequencies. This study utilizes the free-free analysis on the brake pads, to investigate the natural frequencies, and the mode shapes of the first four modes, using ABAQUS software. Also, an experimental test (Tap testing) on Pad-A was carried out to verify the accuracy of the numerical analysis. The research has demonstrated that the maximum variation between the numerical and the experimental results is 5.1%, which is acceptable. Thus, the numerical analysis provided reasonable results.Furthermore, the factorial analysis was applied on the obtained natural frequencies for each pad, to find out the material properties that have the main effect on the natural frequencies, and the relationship between each property and the natural frequency, using MINITAB software. The results indicated that increasing Young’s modulus in the horizontal plane can increase the values of natural frequencies, while a decrease in Young’s modulus in the vertical plane, Poisson’s ratios, and shear modulus in all planes can increase the values of the natural frequencies. Therefore, the research deduced that Young’s modulus, and Poisson’s ratios in the horizontal plane must be taken into account, when choosing a suitable orthotropic friction material for brake pads. This relationship between the friction material properties and the natural frequency is independent of pad aspect ratios, and can be concluded for all types of pads. The natural frequency plays a significant role in triggering brake squeal. Brake squeal can occur if the pad natural frequency is coupled with the disc frequency. Therefore, determining how altering friction material properties affects the pad natural frequency, can help to propose an appropriate friction material for the pad, in order to have the pad natural frequency, which is not close to the disc frequency in the frequency range, where the brake noise occurs.\",\"PeriodicalId\":315146,\"journal\":{\"name\":\"EuroBrake 2021 Technical Programme\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EuroBrake 2021 Technical Programme\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46720/7143269eb2021-stp-008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EuroBrake 2021 Technical Programme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46720/7143269eb2021-stp-008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

该项目概述了改变杨氏模量、泊松比和剪切模量对垫层固有频率的影响。旨在提高对摩擦材料性能对刹车片固有频率影响的认识,观察随着复合刹车片摩擦材料性能的变化,刹车片固有频率是如何变化的。此外,设计了两种不同的刹车片型号(pad - a和pad - b),利用CATIA V5软件研究了不同的刹车片长径比对摩擦材料性能对固有频率的影响。本研究利用ABAQUS软件对刹车片进行了自由-自由分析,研究了刹车片的固有频率和前四个模态的振型。并在Pad-A上进行了实验测试(Tap测试),验证了数值分析的准确性。研究表明,数值计算结果与实验结果的最大偏差为5.1%,可以接受。因此,数值分析提供了合理的结果。利用MINITAB软件对得到的各垫块的固有频率进行析因分析,找出对固有频率有主要影响的材料特性,以及各特性与固有频率之间的关系。结果表明,水平面杨氏模量的增大可使固有频率增大,而垂直平面杨氏模量、泊松比和剪切模量的减小可使固有频率增大。因此,研究推断,在选择合适的正交各向异性刹车片摩擦材料时,必须考虑水平面上的杨氏模量和泊松比。摩擦材料性能与固有频率之间的关系与衬垫长径比无关,适用于所有类型的衬垫。固有频率对制动尖叫的触发起着重要的作用。如果制动垫的固有频率与制动盘的频率相耦合,则会发生制动尖叫。因此,确定摩擦材料特性的改变如何影响垫片的固有频率,可以帮助为垫片提出合适的摩擦材料,以使垫片的固有频率,在不接近盘片频率的频率范围内,发生制动噪声。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Modelling of Composite Brake Pad Operational Deflection Shapes
This project outlines the effect of changing Young’s modulus, Poisson’s ratios and shear modulus on the pad natural frequencies. It aims to improve the understanding of the influence of friction material properties on the pad natural frequencies, to observe how the natural frequencies can change, with the changes in the properties of the composite brake pad friction material. In addition, two different brake pad models (Pad-A and Pad-B) were designed, using CATIA V5 software to study whether different pad aspect ratios can affect the influence of friction material properties on the natural frequencies. This study utilizes the free-free analysis on the brake pads, to investigate the natural frequencies, and the mode shapes of the first four modes, using ABAQUS software. Also, an experimental test (Tap testing) on Pad-A was carried out to verify the accuracy of the numerical analysis. The research has demonstrated that the maximum variation between the numerical and the experimental results is 5.1%, which is acceptable. Thus, the numerical analysis provided reasonable results.Furthermore, the factorial analysis was applied on the obtained natural frequencies for each pad, to find out the material properties that have the main effect on the natural frequencies, and the relationship between each property and the natural frequency, using MINITAB software. The results indicated that increasing Young’s modulus in the horizontal plane can increase the values of natural frequencies, while a decrease in Young’s modulus in the vertical plane, Poisson’s ratios, and shear modulus in all planes can increase the values of the natural frequencies. Therefore, the research deduced that Young’s modulus, and Poisson’s ratios in the horizontal plane must be taken into account, when choosing a suitable orthotropic friction material for brake pads. This relationship between the friction material properties and the natural frequency is independent of pad aspect ratios, and can be concluded for all types of pads. The natural frequency plays a significant role in triggering brake squeal. Brake squeal can occur if the pad natural frequency is coupled with the disc frequency. Therefore, determining how altering friction material properties affects the pad natural frequency, can help to propose an appropriate friction material for the pad, in order to have the pad natural frequency, which is not close to the disc frequency in the frequency range, where the brake noise occurs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信