基于机器学习的光网络短期和长期流量预测研究

Michal Aibin, Nathan Chung, T. Gordon, L. Lyford, Connor Vinchoff
{"title":"基于机器学习的光网络短期和长期流量预测研究","authors":"Michal Aibin, Nathan Chung, T. Gordon, L. Lyford, Connor Vinchoff","doi":"10.23919/ONDM51796.2021.9492437","DOIUrl":null,"url":null,"abstract":"In this paper, we formulate the problem of traf-fic prediction in optical networks. We then design a machine learning approach based on Graph Convolutional Network and the Generative Adversarial Network to enable efficient network states forecasting. The main focus is on detecting the peak traffic in networks that can affect the routing decisions. We validate our results using pseudorealistic datasets generated in a custom simulator and real networks provided by the network operator. The findings confirm our approach’s efficiency for optimizing both the real-time routing and long-term network design decisions.","PeriodicalId":163553,"journal":{"name":"2021 International Conference on Optical Network Design and Modeling (ONDM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"On Short- and Long-Term Traffic Prediction in Optical Networks Using Machine Learning\",\"authors\":\"Michal Aibin, Nathan Chung, T. Gordon, L. Lyford, Connor Vinchoff\",\"doi\":\"10.23919/ONDM51796.2021.9492437\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we formulate the problem of traf-fic prediction in optical networks. We then design a machine learning approach based on Graph Convolutional Network and the Generative Adversarial Network to enable efficient network states forecasting. The main focus is on detecting the peak traffic in networks that can affect the routing decisions. We validate our results using pseudorealistic datasets generated in a custom simulator and real networks provided by the network operator. The findings confirm our approach’s efficiency for optimizing both the real-time routing and long-term network design decisions.\",\"PeriodicalId\":163553,\"journal\":{\"name\":\"2021 International Conference on Optical Network Design and Modeling (ONDM)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Optical Network Design and Modeling (ONDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ONDM51796.2021.9492437\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Optical Network Design and Modeling (ONDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ONDM51796.2021.9492437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文提出了光网络中流量预测的问题。然后,我们设计了一种基于图卷积网络和生成对抗网络的机器学习方法,以实现有效的网络状态预测。主要关注的是检测网络中可能影响路由决策的峰值流量。我们使用自定义模拟器中生成的伪真实数据集和网络运营商提供的真实网络来验证我们的结果。研究结果证实了我们的方法在优化实时路由和长期网络设计决策方面的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Short- and Long-Term Traffic Prediction in Optical Networks Using Machine Learning
In this paper, we formulate the problem of traf-fic prediction in optical networks. We then design a machine learning approach based on Graph Convolutional Network and the Generative Adversarial Network to enable efficient network states forecasting. The main focus is on detecting the peak traffic in networks that can affect the routing decisions. We validate our results using pseudorealistic datasets generated in a custom simulator and real networks provided by the network operator. The findings confirm our approach’s efficiency for optimizing both the real-time routing and long-term network design decisions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信