基于互信息特征选择的高光谱图像分类比较分析

Yuanyuan Fu, X. Jia, Wenjiang Huang, Jihua Wang
{"title":"基于互信息特征选择的高光谱图像分类比较分析","authors":"Yuanyuan Fu, X. Jia, Wenjiang Huang, Jihua Wang","doi":"10.1109/ChinaSIP.2014.6889220","DOIUrl":null,"url":null,"abstract":"Feature selection is an important task for hyperspectral imagery classification and becomes more critical for the emerging big data analysis. Selection criteria based on mutual information theory have the advantages in terms of distribution free, nonlinearity and low computational load for multiclass cases. However several have been developed and are available to use. In this study, we conduct a comparative analysis on four defined criteria and their performances are evaluated using two hyperspectral data sets with two levels of sample sizes.","PeriodicalId":248977,"journal":{"name":"2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A comparative analysis of mutual information based feature selection for hyperspectral image classification\",\"authors\":\"Yuanyuan Fu, X. Jia, Wenjiang Huang, Jihua Wang\",\"doi\":\"10.1109/ChinaSIP.2014.6889220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Feature selection is an important task for hyperspectral imagery classification and becomes more critical for the emerging big data analysis. Selection criteria based on mutual information theory have the advantages in terms of distribution free, nonlinearity and low computational load for multiclass cases. However several have been developed and are available to use. In this study, we conduct a comparative analysis on four defined criteria and their performances are evaluated using two hyperspectral data sets with two levels of sample sizes.\",\"PeriodicalId\":248977,\"journal\":{\"name\":\"2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP)\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ChinaSIP.2014.6889220\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ChinaSIP.2014.6889220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

特征选择是高光谱图像分类的一项重要任务,在新兴的大数据分析中变得越来越重要。基于互信息理论的选择准则在多类情况下具有无分布、非线性和计算量低等优点。不过,已经开发了几种方法并可供使用。在本研究中,我们对四种定义的标准进行了比较分析,并使用两种不同样本量的高光谱数据集评估了它们的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comparative analysis of mutual information based feature selection for hyperspectral image classification
Feature selection is an important task for hyperspectral imagery classification and becomes more critical for the emerging big data analysis. Selection criteria based on mutual information theory have the advantages in terms of distribution free, nonlinearity and low computational load for multiclass cases. However several have been developed and are available to use. In this study, we conduct a comparative analysis on four defined criteria and their performances are evaluated using two hyperspectral data sets with two levels of sample sizes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信