离散时间Lipschitz非线性系统观测器设计。最新的研究成果

A. Zemouche, M. Boutayeb
{"title":"离散时间Lipschitz非线性系统观测器设计。最新的研究成果","authors":"A. Zemouche, M. Boutayeb","doi":"10.1109/CDC.2012.6426564","DOIUrl":null,"url":null,"abstract":"This note addresses the problem of observers design for Lipschitz nonlinear systems in the discrete-time case. The main objective of this work is to clarify and correct some recent results in this field. After a state of the art, some analytical comparisons are provided. On the other hand, a new Linear Parameter Varying (LPV) technique is proposed to reduce the conservatism related to the classical observer design methods. A numerical example is given in order to show the performance of the proposed LPV method.","PeriodicalId":312426,"journal":{"name":"2012 IEEE 51st IEEE Conference on Decision and Control (CDC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Observers design for discrete-time Lipschitz nonlinear systems. State of the art and new results\",\"authors\":\"A. Zemouche, M. Boutayeb\",\"doi\":\"10.1109/CDC.2012.6426564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This note addresses the problem of observers design for Lipschitz nonlinear systems in the discrete-time case. The main objective of this work is to clarify and correct some recent results in this field. After a state of the art, some analytical comparisons are provided. On the other hand, a new Linear Parameter Varying (LPV) technique is proposed to reduce the conservatism related to the classical observer design methods. A numerical example is given in order to show the performance of the proposed LPV method.\",\"PeriodicalId\":312426,\"journal\":{\"name\":\"2012 IEEE 51st IEEE Conference on Decision and Control (CDC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 51st IEEE Conference on Decision and Control (CDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.2012.6426564\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 51st IEEE Conference on Decision and Control (CDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2012.6426564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文讨论了离散情况下Lipschitz非线性系统的观测器设计问题。这项工作的主要目的是澄清和纠正这一领域的一些最新成果。在介绍了目前的技术状况之后,提供了一些分析比较。另一方面,提出了一种新的线性参数变化(LPV)方法,以降低经典观测器设计方法的保守性。最后给出了一个数值算例,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Observers design for discrete-time Lipschitz nonlinear systems. State of the art and new results
This note addresses the problem of observers design for Lipschitz nonlinear systems in the discrete-time case. The main objective of this work is to clarify and correct some recent results in this field. After a state of the art, some analytical comparisons are provided. On the other hand, a new Linear Parameter Varying (LPV) technique is proposed to reduce the conservatism related to the classical observer design methods. A numerical example is given in order to show the performance of the proposed LPV method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信