基于CPUGPU异构平台的实时SAR成像系统

Yewei Wu, Jun Chen, Hongqun Zhang
{"title":"基于CPUGPU异构平台的实时SAR成像系统","authors":"Yewei Wu, Jun Chen, Hongqun Zhang","doi":"10.1109/ICOSP.2012.6491524","DOIUrl":null,"url":null,"abstract":"With the features of exceptional computing power, low-cost, low power consumption characteristics, the CPU-GPU heterogeneous platform provides an alternative choice for high performance parallel computing. This paper introduces an efficient SAR imaging system design and implementation, which is based on such heterogeneous platform. Tested with Envisat ASAR raw data, the system meets the demands of real-time SAR processing. Furthermore, GPU-based imaging results in a 13 times speed up than multithreaded CPU implementation.","PeriodicalId":143331,"journal":{"name":"2012 IEEE 11th International Conference on Signal Processing","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A real-time SAR imaging system based on CPUGPU heterogeneous platform\",\"authors\":\"Yewei Wu, Jun Chen, Hongqun Zhang\",\"doi\":\"10.1109/ICOSP.2012.6491524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the features of exceptional computing power, low-cost, low power consumption characteristics, the CPU-GPU heterogeneous platform provides an alternative choice for high performance parallel computing. This paper introduces an efficient SAR imaging system design and implementation, which is based on such heterogeneous platform. Tested with Envisat ASAR raw data, the system meets the demands of real-time SAR processing. Furthermore, GPU-based imaging results in a 13 times speed up than multithreaded CPU implementation.\",\"PeriodicalId\":143331,\"journal\":{\"name\":\"2012 IEEE 11th International Conference on Signal Processing\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 11th International Conference on Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOSP.2012.6491524\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 11th International Conference on Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSP.2012.6491524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

CPU-GPU异构平台具有超强的计算能力、低成本、低功耗等特点,为高性能并行计算提供了另一种选择。本文介绍了一种基于异构平台的高效SAR成像系统的设计与实现。通过Envisat ASAR原始数据的测试,该系统能够满足实时SAR处理的要求。此外,基于gpu的成像比多线程CPU实现的速度快13倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A real-time SAR imaging system based on CPUGPU heterogeneous platform
With the features of exceptional computing power, low-cost, low power consumption characteristics, the CPU-GPU heterogeneous platform provides an alternative choice for high performance parallel computing. This paper introduces an efficient SAR imaging system design and implementation, which is based on such heterogeneous platform. Tested with Envisat ASAR raw data, the system meets the demands of real-time SAR processing. Furthermore, GPU-based imaging results in a 13 times speed up than multithreaded CPU implementation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信