视觉错觉认知数据集构建及深度神经网络识别性能研究

Tingting Li, Fanyu Wang, Ying Zhou, Zhenping Xie
{"title":"视觉错觉认知数据集构建及深度神经网络识别性能研究","authors":"Tingting Li, Fanyu Wang, Ying Zhou, Zhenping Xie","doi":"10.1109/ccis57298.2022.10016369","DOIUrl":null,"url":null,"abstract":"The illusion cognition of human vision is commonly regarded as a typical recognition pattern, which serves a significant role in further analysis. In this study, an illusion cognition experiment based on DNNs is designed. Wherein the dataset is constructed by modeling a series of visual illusion scenes, including 3D stereo chessboard and 2D plane contrast optical illusion scenes. The high semantic segmentation evaluation accuracy result (over 0.97) on the constructed dataset demonstrates that visual illusion scenes can be effectively recognized by current DNN models, which also reflects that the illusion cognition of human vision is not a true illusion phenomenon and should imply an unknown expressible computing logic.","PeriodicalId":374660,"journal":{"name":"2022 IEEE 8th International Conference on Cloud Computing and Intelligent Systems (CCIS)","volume":"160 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visual illusion cognition dataset construction and recognition performance by deep neural networks\",\"authors\":\"Tingting Li, Fanyu Wang, Ying Zhou, Zhenping Xie\",\"doi\":\"10.1109/ccis57298.2022.10016369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The illusion cognition of human vision is commonly regarded as a typical recognition pattern, which serves a significant role in further analysis. In this study, an illusion cognition experiment based on DNNs is designed. Wherein the dataset is constructed by modeling a series of visual illusion scenes, including 3D stereo chessboard and 2D plane contrast optical illusion scenes. The high semantic segmentation evaluation accuracy result (over 0.97) on the constructed dataset demonstrates that visual illusion scenes can be effectively recognized by current DNN models, which also reflects that the illusion cognition of human vision is not a true illusion phenomenon and should imply an unknown expressible computing logic.\",\"PeriodicalId\":374660,\"journal\":{\"name\":\"2022 IEEE 8th International Conference on Cloud Computing and Intelligent Systems (CCIS)\",\"volume\":\"160 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 8th International Conference on Cloud Computing and Intelligent Systems (CCIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ccis57298.2022.10016369\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 8th International Conference on Cloud Computing and Intelligent Systems (CCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ccis57298.2022.10016369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人类视觉的错觉认知通常被认为是一种典型的识别模式,在进一步的分析中具有重要的作用。本研究设计了一个基于深度神经网络的错觉认知实验。其中通过对一系列视错觉场景建模构建数据集,包括三维立体棋盘和二维平面对比视错觉场景。在构建的数据集上获得了较高的语义分割评价准确率(超过0.97),表明目前的DNN模型能够有效识别视觉错觉场景,这也反映了人类视觉的错觉认知并不是一种真正的错觉现象,应该隐含着未知的可表达计算逻辑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visual illusion cognition dataset construction and recognition performance by deep neural networks
The illusion cognition of human vision is commonly regarded as a typical recognition pattern, which serves a significant role in further analysis. In this study, an illusion cognition experiment based on DNNs is designed. Wherein the dataset is constructed by modeling a series of visual illusion scenes, including 3D stereo chessboard and 2D plane contrast optical illusion scenes. The high semantic segmentation evaluation accuracy result (over 0.97) on the constructed dataset demonstrates that visual illusion scenes can be effectively recognized by current DNN models, which also reflects that the illusion cognition of human vision is not a true illusion phenomenon and should imply an unknown expressible computing logic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信