使用遗传算法扩展虚拟网络功能的实验结果

W. Rankothge, Franck Le, A. Russo, Jorge Lobo
{"title":"使用遗传算法扩展虚拟网络功能的实验结果","authors":"W. Rankothge, Franck Le, A. Russo, Jorge Lobo","doi":"10.1109/NFV-SDN.2015.7387405","DOIUrl":null,"url":null,"abstract":"Network Function Virtualization (NFV) is bringing closer the possibility to truly migrate enterprise data centers into the cloud. However, for a Cloud Service Provider to offer such services, important questions include how and when to scale out/in resources to satisfy dynamic traffic/application demands. In previous work [1], we have proposed a platform called Network Function Center (NFC) to study research issues related to NFV and Network Functions (NFs). In a NFC, we assume NFs to be implemented on virtual machines that can be deployed in any server in the network. In this paper we present further experiments on the use of Genetic Algorithms (GAs) for scaling out/in NFs when the traffic changes dynamically. We combined data from previous empirical analyses [2], [3] to generate NF chains and for getting traffic patterns of a day and run simulations of resource allocation decision making. We have implemented different fitness functions with GA and compared their performance when scaling out/in over time.","PeriodicalId":315251,"journal":{"name":"2015 IEEE Conference on Network Function Virtualization and Software Defined Network (NFV-SDN)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Experimental results on the use of genetic algorithms for scaling virtualized network functions\",\"authors\":\"W. Rankothge, Franck Le, A. Russo, Jorge Lobo\",\"doi\":\"10.1109/NFV-SDN.2015.7387405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Network Function Virtualization (NFV) is bringing closer the possibility to truly migrate enterprise data centers into the cloud. However, for a Cloud Service Provider to offer such services, important questions include how and when to scale out/in resources to satisfy dynamic traffic/application demands. In previous work [1], we have proposed a platform called Network Function Center (NFC) to study research issues related to NFV and Network Functions (NFs). In a NFC, we assume NFs to be implemented on virtual machines that can be deployed in any server in the network. In this paper we present further experiments on the use of Genetic Algorithms (GAs) for scaling out/in NFs when the traffic changes dynamically. We combined data from previous empirical analyses [2], [3] to generate NF chains and for getting traffic patterns of a day and run simulations of resource allocation decision making. We have implemented different fitness functions with GA and compared their performance when scaling out/in over time.\",\"PeriodicalId\":315251,\"journal\":{\"name\":\"2015 IEEE Conference on Network Function Virtualization and Software Defined Network (NFV-SDN)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Conference on Network Function Virtualization and Software Defined Network (NFV-SDN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NFV-SDN.2015.7387405\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Conference on Network Function Virtualization and Software Defined Network (NFV-SDN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NFV-SDN.2015.7387405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

网络功能虚拟化(NFV)使企业数据中心真正迁移到云端的可能性越来越大。然而,对于提供此类服务的云服务提供商来说,重要的问题包括如何以及何时扩展资源以满足动态流量/应用程序需求。在之前的工作[1]中,我们提出了一个名为网络功能中心(NFC)的平台来研究NFV和网络功能(NFs)相关的研究问题。在NFC中,我们假设NFs是在虚拟机上实现的,这些虚拟机可以部署在网络中的任何服务器上。在本文中,我们提出了在流量动态变化时使用遗传算法(GAs)扩展NFs的进一步实验。我们结合之前的经验分析[2],[3]的数据来生成NF链,并获得一天的流量模式,并运行资源分配决策的模拟。我们用遗传算法实现了不同的适应度函数,并比较了它们随时间向外/向内扩展时的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental results on the use of genetic algorithms for scaling virtualized network functions
Network Function Virtualization (NFV) is bringing closer the possibility to truly migrate enterprise data centers into the cloud. However, for a Cloud Service Provider to offer such services, important questions include how and when to scale out/in resources to satisfy dynamic traffic/application demands. In previous work [1], we have proposed a platform called Network Function Center (NFC) to study research issues related to NFV and Network Functions (NFs). In a NFC, we assume NFs to be implemented on virtual machines that can be deployed in any server in the network. In this paper we present further experiments on the use of Genetic Algorithms (GAs) for scaling out/in NFs when the traffic changes dynamically. We combined data from previous empirical analyses [2], [3] to generate NF chains and for getting traffic patterns of a day and run simulations of resource allocation decision making. We have implemented different fitness functions with GA and compared their performance when scaling out/in over time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信