{"title":"一种基于隧道辅助冲击电离前沿的新型功率皮秒半导体开关","authors":"P. Rodin, U. Ebert, W. Hundsdorfer, I. Grekhov","doi":"10.1109/MODSYM.2002.1189510","DOIUrl":null,"url":null,"abstract":"We propose a novel type of closing semiconductor switches based on a new physical mechanism-the propagation of a superfast tunneling-assisted impact ionization front. We present numerical simulations of the switching transients in the proposed devices. Our numerical results suggest that with the new mechanism, voltage pulses with a ramp up to 500 kV/ns and amplitude up to 8 kV can be formed. This sets new frontiers in pulse power electronics.","PeriodicalId":339166,"journal":{"name":"Conference Record of the Twenty-Fifth International Power Modulator Symposium, 2002 and 2002 High-Voltage Workshop.","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A novel type of power picosecond semiconductor switches based on tunneling-assisted impact ionization fronts\",\"authors\":\"P. Rodin, U. Ebert, W. Hundsdorfer, I. Grekhov\",\"doi\":\"10.1109/MODSYM.2002.1189510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel type of closing semiconductor switches based on a new physical mechanism-the propagation of a superfast tunneling-assisted impact ionization front. We present numerical simulations of the switching transients in the proposed devices. Our numerical results suggest that with the new mechanism, voltage pulses with a ramp up to 500 kV/ns and amplitude up to 8 kV can be formed. This sets new frontiers in pulse power electronics.\",\"PeriodicalId\":339166,\"journal\":{\"name\":\"Conference Record of the Twenty-Fifth International Power Modulator Symposium, 2002 and 2002 High-Voltage Workshop.\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference Record of the Twenty-Fifth International Power Modulator Symposium, 2002 and 2002 High-Voltage Workshop.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MODSYM.2002.1189510\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of the Twenty-Fifth International Power Modulator Symposium, 2002 and 2002 High-Voltage Workshop.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MODSYM.2002.1189510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A novel type of power picosecond semiconductor switches based on tunneling-assisted impact ionization fronts
We propose a novel type of closing semiconductor switches based on a new physical mechanism-the propagation of a superfast tunneling-assisted impact ionization front. We present numerical simulations of the switching transients in the proposed devices. Our numerical results suggest that with the new mechanism, voltage pulses with a ramp up to 500 kV/ns and amplitude up to 8 kV can be formed. This sets new frontiers in pulse power electronics.