提高农业作物可持续性的增强智能平台配置标准

Alejandro Peña-Palacio
{"title":"提高农业作物可持续性的增强智能平台配置标准","authors":"Alejandro Peña-Palacio","doi":"10.26439/ciis2020.5516","DOIUrl":null,"url":null,"abstract":"El desarrollo de la inteligencia artificial ha planteado una serie de retos en cuanto al futuro y la sostenibilidad del trabajo humano. Sin embargo, el desarrollo de la tecnología ha traído consigo el desarrollo de conceptos como el de la inteligencia aumentada (IA), el cual tiene por objetivo el mejoramiento de las capacidades humanas mediante la interacción hombre-máquina para la solución de problemas complejos en diferentes áreas del conoci miento. Esta interacción supone una serie de retos desde lo tecnológico, ya que la experiencia humana es un proceso complejo de transfer learning para que las máquinas sean un comple mento perfecto de las personas. En el contexto de la agricultura de precisión, las plataformas de inteligencia aumentada (AIP, por sus siglas en inglés) han surgido como una alternativa importante para el fortalecimiento de las capacidades en la detección y diagnóstico de estados fitosanitarios o agroclimáticos. En este artículo, se propone una metodología para la configu ración de las AIP, integrando tres elementos que son fundamentales para la sostenibilidad de cultivos como son: imágenes áreas espectrales utilizando vehículos aéreos no tripulados (UAV, por sus siglas en inglés), mapas de pronóstico para describir la dispersión de enfermedades y sus vectores asociados en campo, modelos deep y machine learning para la caracterización auto mática de eventos fitosanitarios o agroclimáticos, así como redes IoT-IoB (Internet of Things e Internet of Beings) para la interacción hombre-dispositivos. Para la evaluación de estas platafor mas, se propone un GAP de sostenibilidad, el cual evalúa de una manera integral la reducción en el uso de pesticidas y fertilizantes, así como la sostenibilidad de los puestos de trabajo en un futuro de largo plazo, y en donde la inteligencia artificial tendrá un papel preponderante en el desarrollo agrícola en el mundo.","PeriodicalId":256978,"journal":{"name":"Actas del Congreso Internacional de Ingeniería de Sistemas 2020: Construyendo un mundo inteligente para la sostenibilidad","volume":"179 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Criterios para la configuración de plataformas de inteligencia aumentada para el mejoramiento de la sostenibilidad de cultivos agrícolas\",\"authors\":\"Alejandro Peña-Palacio\",\"doi\":\"10.26439/ciis2020.5516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"El desarrollo de la inteligencia artificial ha planteado una serie de retos en cuanto al futuro y la sostenibilidad del trabajo humano. Sin embargo, el desarrollo de la tecnología ha traído consigo el desarrollo de conceptos como el de la inteligencia aumentada (IA), el cual tiene por objetivo el mejoramiento de las capacidades humanas mediante la interacción hombre-máquina para la solución de problemas complejos en diferentes áreas del conoci miento. Esta interacción supone una serie de retos desde lo tecnológico, ya que la experiencia humana es un proceso complejo de transfer learning para que las máquinas sean un comple mento perfecto de las personas. En el contexto de la agricultura de precisión, las plataformas de inteligencia aumentada (AIP, por sus siglas en inglés) han surgido como una alternativa importante para el fortalecimiento de las capacidades en la detección y diagnóstico de estados fitosanitarios o agroclimáticos. En este artículo, se propone una metodología para la configu ración de las AIP, integrando tres elementos que son fundamentales para la sostenibilidad de cultivos como son: imágenes áreas espectrales utilizando vehículos aéreos no tripulados (UAV, por sus siglas en inglés), mapas de pronóstico para describir la dispersión de enfermedades y sus vectores asociados en campo, modelos deep y machine learning para la caracterización auto mática de eventos fitosanitarios o agroclimáticos, así como redes IoT-IoB (Internet of Things e Internet of Beings) para la interacción hombre-dispositivos. Para la evaluación de estas platafor mas, se propone un GAP de sostenibilidad, el cual evalúa de una manera integral la reducción en el uso de pesticidas y fertilizantes, así como la sostenibilidad de los puestos de trabajo en un futuro de largo plazo, y en donde la inteligencia artificial tendrá un papel preponderante en el desarrollo agrícola en el mundo.\",\"PeriodicalId\":256978,\"journal\":{\"name\":\"Actas del Congreso Internacional de Ingeniería de Sistemas 2020: Construyendo un mundo inteligente para la sostenibilidad\",\"volume\":\"179 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Actas del Congreso Internacional de Ingeniería de Sistemas 2020: Construyendo un mundo inteligente para la sostenibilidad\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26439/ciis2020.5516\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Actas del Congreso Internacional de Ingeniería de Sistemas 2020: Construyendo un mundo inteligente para la sostenibilidad","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26439/ciis2020.5516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人工智能的发展给人类工作的未来和可持续性带来了许多挑战。然而,技术的发展带来了诸如增强智能(ai)等概念的发展,其目的是通过人机交互来提高人类的能力,以解决不同知识领域的复杂问题。这种互动带来了一系列的技术挑战,因为人类的经验是一个复杂的转移学习过程,机器是人的完美补充。在精准农业的背景下,增强智能平台(AIP)已成为加强植物检疫或农业气候状况检测和诊断能力的重要替代方案。本文提出了一种建立ipi的方法,整合了对作物可持续性至关重要的三个要素,即:光谱图像领域使用无人飞行器(无人驾驶),预测图来描述色散及其相关媒介疾病领域,深度和machine learning模型车定性事件mática植物或得来的,以及IoT-IoB网络(Internet of Things, Internet of Beings)用于hombre-dispositivos的互动。评估这些platafor,拟一个多GAP,评估可持续性整体减少使用农药和化肥,以及就业的可持续性在长远的未来,和人工智能将作用在世界各地的农业发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Criterios para la configuración de plataformas de inteligencia aumentada para el mejoramiento de la sostenibilidad de cultivos agrícolas
El desarrollo de la inteligencia artificial ha planteado una serie de retos en cuanto al futuro y la sostenibilidad del trabajo humano. Sin embargo, el desarrollo de la tecnología ha traído consigo el desarrollo de conceptos como el de la inteligencia aumentada (IA), el cual tiene por objetivo el mejoramiento de las capacidades humanas mediante la interacción hombre-máquina para la solución de problemas complejos en diferentes áreas del conoci miento. Esta interacción supone una serie de retos desde lo tecnológico, ya que la experiencia humana es un proceso complejo de transfer learning para que las máquinas sean un comple mento perfecto de las personas. En el contexto de la agricultura de precisión, las plataformas de inteligencia aumentada (AIP, por sus siglas en inglés) han surgido como una alternativa importante para el fortalecimiento de las capacidades en la detección y diagnóstico de estados fitosanitarios o agroclimáticos. En este artículo, se propone una metodología para la configu ración de las AIP, integrando tres elementos que son fundamentales para la sostenibilidad de cultivos como son: imágenes áreas espectrales utilizando vehículos aéreos no tripulados (UAV, por sus siglas en inglés), mapas de pronóstico para describir la dispersión de enfermedades y sus vectores asociados en campo, modelos deep y machine learning para la caracterización auto mática de eventos fitosanitarios o agroclimáticos, así como redes IoT-IoB (Internet of Things e Internet of Beings) para la interacción hombre-dispositivos. Para la evaluación de estas platafor mas, se propone un GAP de sostenibilidad, el cual evalúa de una manera integral la reducción en el uso de pesticidas y fertilizantes, así como la sostenibilidad de los puestos de trabajo en un futuro de largo plazo, y en donde la inteligencia artificial tendrá un papel preponderante en el desarrollo agrícola en el mundo.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信