基于集成经验模态分解算法的心音信号处理硬件设计

Chia-Ching Chou, Kuen-Chih Lin, W. Fang, A. H. Li, Yu-Ching Chang, Bai-Kuang Hwang, Y. Shau
{"title":"基于集成经验模态分解算法的心音信号处理硬件设计","authors":"Chia-Ching Chou, Kuen-Chih Lin, W. Fang, A. H. Li, Yu-Ching Chang, Bai-Kuang Hwang, Y. Shau","doi":"10.1109/ISCE.2013.6570241","DOIUrl":null,"url":null,"abstract":"In this study, an advanced hardware design for heart sound signal processing based on ensemble empirical mode decomposition (EEMD) is developed and implemented. The EEMD method [1] is developed to alleviate a key drawback in the original empirical mode decomposition (EMD) algorithm. In a previous research, Huang et al. [2] developed an adaptive and efficient EMD method for nonlinear and nonstationary signal analysis. The physical meaning of a single intrinsic mode function (IMF) is obscure, and the original EMD algorithm cannot separate signals with different scales into appropriate IMFs. To overcome this major drawback, a noise-assisted data analysis (NADA) method called EEMD is developed. Heart sound signals are fed into the proposed system to simulate the EEMD-fixed-point performance. A comparison of the floating-point and fixed-point results exhibits satisfactory consistency and demonstrates that our design can accommodate wide variations of dynamic ranges and complicated calculations.","PeriodicalId":442380,"journal":{"name":"2013 IEEE International Symposium on Consumer Electronics (ISCE)","volume":"67 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An advanced hardware design based on ensemble empirical mode decomposition algorithm for heart sound signal processing\",\"authors\":\"Chia-Ching Chou, Kuen-Chih Lin, W. Fang, A. H. Li, Yu-Ching Chang, Bai-Kuang Hwang, Y. Shau\",\"doi\":\"10.1109/ISCE.2013.6570241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, an advanced hardware design for heart sound signal processing based on ensemble empirical mode decomposition (EEMD) is developed and implemented. The EEMD method [1] is developed to alleviate a key drawback in the original empirical mode decomposition (EMD) algorithm. In a previous research, Huang et al. [2] developed an adaptive and efficient EMD method for nonlinear and nonstationary signal analysis. The physical meaning of a single intrinsic mode function (IMF) is obscure, and the original EMD algorithm cannot separate signals with different scales into appropriate IMFs. To overcome this major drawback, a noise-assisted data analysis (NADA) method called EEMD is developed. Heart sound signals are fed into the proposed system to simulate the EEMD-fixed-point performance. A comparison of the floating-point and fixed-point results exhibits satisfactory consistency and demonstrates that our design can accommodate wide variations of dynamic ranges and complicated calculations.\",\"PeriodicalId\":442380,\"journal\":{\"name\":\"2013 IEEE International Symposium on Consumer Electronics (ISCE)\",\"volume\":\"67 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Symposium on Consumer Electronics (ISCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCE.2013.6570241\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Symposium on Consumer Electronics (ISCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCE.2013.6570241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出并实现了一种基于集成经验模态分解(EEMD)的心音信号处理硬件设计。EEMD方法[1]是为了改善原始经验模态分解(EMD)算法的一个关键缺陷而开发的。在之前的研究中,Huang等人([2])开发了一种自适应的高效EMD方法,用于非线性和非平稳信号分析。单个内禀模态函数(IMF)的物理意义模糊,原有的EMD算法无法将不同尺度的信号分离为合适的IMF。为了克服这一主要缺点,开发了一种称为EEMD的噪声辅助数据分析(NADA)方法。将心音信号输入到系统中,模拟eemd的定点性能。浮点和定点计算结果的比较显示出令人满意的一致性,表明我们的设计可以适应大范围的动态范围变化和复杂的计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An advanced hardware design based on ensemble empirical mode decomposition algorithm for heart sound signal processing
In this study, an advanced hardware design for heart sound signal processing based on ensemble empirical mode decomposition (EEMD) is developed and implemented. The EEMD method [1] is developed to alleviate a key drawback in the original empirical mode decomposition (EMD) algorithm. In a previous research, Huang et al. [2] developed an adaptive and efficient EMD method for nonlinear and nonstationary signal analysis. The physical meaning of a single intrinsic mode function (IMF) is obscure, and the original EMD algorithm cannot separate signals with different scales into appropriate IMFs. To overcome this major drawback, a noise-assisted data analysis (NADA) method called EEMD is developed. Heart sound signals are fed into the proposed system to simulate the EEMD-fixed-point performance. A comparison of the floating-point and fixed-point results exhibits satisfactory consistency and demonstrates that our design can accommodate wide variations of dynamic ranges and complicated calculations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信